access icon free Distributed finite-time control for spatially interconnected systems

Compared with the classical Lyapunov asymptotic stability, finite-time stability is much more important and significant in some practical applications. The purpose of this study is to design the distributed controllers such that the controlled spatially interconnected systems are well-posed, finite-time stable/bounded and finite-time contractive. First, the authors introduce the definitions of finite-time stability/boundedness and finite-time contractiveness for spatially interconnected systems based on the given system matrices. Second, a sufficient condition is proposed to check the well-posedness, finite-time stability/bounedness and finite-time contractiveness of spatially interconnected systems. Third, the distributed controllers are designed to solve the distributed finite-time control problem. Besides, the existence condition and construction of the distributed controllers are shown. In the end, a one-dimensional heat equation example is demonstrated to verify the effectiveness of the proposed control method.

Inspec keywords: matrix algebra; distributed control; asymptotic stability; interconnected systems; control system synthesis; Lyapunov methods

Other keywords: finite-time stability; finite-time contractiveness; distributed finite-time control problem; finite-time boundedness; sufficient condition; controlled spatially interconnected systems; classical Lyapunov asymptotic stability; one-dimensional heat equation; distributed controller design; system matrices

Subjects: Stability in control theory; Algebra; Multivariable control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 23. Weiss, L., Infante, E.: ‘Finite time stability under perturbing forces and on product spaces’, IEEE Trans. Autom. Control, 1967, 12, (1), pp. 5459.
    2. 2)
      • 6. Stipanovic, D.M., Inalhan, G., Teo, R., et al: ‘Decentralized overlapping control of a formation of unmanned aerial vehicles’, Automatica, 2004, 40, (8), pp. 12851296.
    3. 3)
      • 30. Xiang, Z., Qiao, C., Mahmoud, M.S.: ‘Finite-time analysis and H control for switched stochastic systems’, J. Franklin Inst., 2012, 349, (3), pp. 915927.
    4. 4)
      • 16. Chandra, R.S., Langbort, C., D'Andrea, R.: ‘Distributed control design with robustness to small time delays’, Syst. Control Lett., 2009, 58, (4), pp. 296303.
    5. 5)
      • 12. Kim, B.Y., Kim, Y.S., Ahn, H.S.: ‘Stability analysis of spatially interconnected discrete-time systems with random delays and structured uncertainties’, J. Franklin Inst., 2013, 350, (7), pp. 17191738.
    6. 6)
      • 4. Swaroop, D., Hedrick, J.K.: ‘Constant spacing strategies for platooning in automated highway systems’, ASME J. Dyn. Syst. Meas. Control, 1999, 121, (3), pp. 462470.
    7. 7)
      • 15. Feng, H., Xu, H., Xu, S., et al: ‘Distributed control design for spatially interconnected Markovian jump systems with time-varying delays’, Asian J. Control, 2018, 20, (3), pp. 11251134.
    8. 8)
      • 8. D'Andrea, G.: ‘A linear matrix inequality approach to decentralized control of distributed parameter systems’. Proc. American Control Conf., Philadelphia, PA, USA, June 1998, pp. 13501354.
    9. 9)
      • 21. Zhang, X., Hengster-Movric, K., Sbek, M., et al: ‘Distributed observer and controller design for spatially interconnected systems’, IEEE Trans. Control Syst. Technol., 2019, 27, (1), pp. 113.
    10. 10)
      • 1. D'Andrea, R., Dullerud, G.E.: ‘Distributed control design for spatially interconnected systems’, IEEE Trans. Autom. Control, 2003, 48, (9), pp. 14781495.
    11. 11)
      • 3. Raza, H., Ioannou, P.: ‘Vehicle following control design for automated highway systems’, IEEE Control Syst. Mag., 1996, 16, (6), pp. 4360.
    12. 12)
      • 5. Kapilal, V., Sparks, A.G., Buffington, J.M., et al: ‘Spacecraft formation flying: dynamics and control’, J. Guid. Control Dyn., 2000, 23, (3), pp. 561564.
    13. 13)
      • 11. Wu, F.: ‘Distributed control for interconnected linear parameter-dependent systems’, IEE Proc.-Control Theory Appl., 2003, 150, (5), pp. 518527.
    14. 14)
      • 13. Liu, Q., Werner, H.: ‘Distributed identification and control of spatially interconnected systems with application to an actuated beam’, Control Eng. Pract., 2016, 54, pp. 104116.
    15. 15)
      • 25. Amato, F., Ariola, M., Cosentino, C.: ‘Finite-time stabilization via dynamic output feedback’, Automatica, 2006, 42, (2), pp. 337342.
    16. 16)
      • 26. Amato, F., Ariola, M.: ‘Finite-time control of discrete-time linear systems’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 724729.
    17. 17)
      • 35. Scherer, C.: ‘LPV control and full block multipliers’, Automatic, 2001, 37, (3), pp. 361372.
    18. 18)
      • 24. Michel, A.N., Wu, S.H.: ‘Stability of discrete systems over a finite interval of time’, Int. J. Control, 1969, 9, (6), pp. 679693.
    19. 19)
      • 2. D'Andrea, R., Chandra, R.S.: ‘Control of spatially interconnected discrete-time systems’. Proc. IEEE Conf. on Decision and Control, Las Vegas, NV, USA, December 2002, pp. 240245.
    20. 20)
      • 33. Wang, G., Liu, L., Zhang, Q., et al: ‘Finite-time stability and stabilization of stochastic delayed jump systems via general controllers’, J. Franklin Inst., 2017, 354, (2), pp. 938966.
    21. 21)
      • 28. Meng, Q., Shen, Y.: ‘Finite-time H control for linear continuous system with norm-bounded disturbance’, Commun. Nonlinear Sci. Numer. Simul., 2009, 14, (4), pp. 10431049.
    22. 22)
      • 14. Langbort, C., Chandra, R.S., D'Andrea, R.: ‘Distributed control design for systems interconnected over an arbitrary graph’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15021519.
    23. 23)
      • 20. Kim, B.Y., Lee, T., Kim, Y.S., et al: ‘Iterative learning control for spatially interconnected systems’, Appl. Math. Comput., 2014, 237, pp. 438445.
    24. 24)
      • 19. Xu, H., Shu, Z., Wang, G., et al: ‘2-D representation and generalized Kalman–Yakubivich–Popov lemma of one dimensional spatially interconnected systems’. Proc. Chinese Control Conf., Nanjing, China, July 2014, pp. 17671771.
    25. 25)
      • 18. Zhou, T.: ‘On the stability of spatially distributed systems’, IEEE Trans. Autom. Control, 2008, 53, (10), pp. 23852391.
    26. 26)
      • 17. Chandra, R.S., D'Andrea, R.: ‘A scaled small gain theorem with applications to spatially interconnected systems’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 465469.
    27. 27)
      • 27. Amato, F., Ariola, M., Cosentino, C.: ‘Finite-time control of discrete-time linear systems: analysis and design conditions’, Automatica, 2010, 46, (5), pp. 919924.
    28. 28)
      • 22. Feng, H., Xu, H., Xu, S., et al: ‘Model reference tracking control for spatially interconnected discrete-time systems with interconnected chains’, Appl. Math. Comput., 2019, 340, pp. 5062.
    29. 29)
      • 7. Stewart, G.E., Gorinevsky, D.M., Dumont, G.A.: ‘Spatial loopshaping: a case study on cross-directional profile control’. Proc. American Control Conf., San Diego, CA, USA, June 1999, pp. 30983103.
    30. 30)
      • 10. Xu, H., Lin, Z., Zhai, X., et al: ‘Quadratic stability analysis and robust distributed controllers design for uncertain spatially interconnected systems’, J. Franklin Inst., 2018, 355, (16), pp. 79247961.
    31. 31)
      • 31. Lin, X., Du, H., Li, S., et al: ‘Finite-time stability and finite-time weighted L2-gain analysis for switched systems with time-varying delay’, IET Control Theory Appl., 2013, 7, (7), pp. 10581069.
    32. 32)
      • 34. Huang, Y., Jia, Y.: ‘Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation’, IET Control Theory Appl., 2017, 12, (4), pp. 532542.
    33. 33)
      • 32. Shen, H., Park, J.H., Wu, Z.G.: ‘Finite-time reliable L2L/H control for Takagi-Sugeno fuzzy systems with actuator faults’, IET Control Theory Appl., 2014, 8, (9), pp. 688696.
    34. 34)
      • 9. Fowler, J.M., D'Andrea, R.: ‘Distributed control of close formation flight’. Proc. IEEE Conf. on Decision and Control, Las Vegas, NV, USA, December 2002, pp. 29722977.
    35. 35)
      • 29. Xiang, W., Xiao, J.: ‘H finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance’, J. Franklin Inst., 2011, 348, (2), pp. 331352.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6377
Loading

Related content

content/journals/10.1049/iet-cta.2018.6377
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading