http://iet.metastore.ingenta.com
1887

On dissipativity-based filtering for discrete-time switched singular systems with sensor failures: a persistent dwell-time scheme

On dissipativity-based filtering for discrete-time switched singular systems with sensor failures: a persistent dwell-time scheme

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The work is interested in the extended dissipative filtering issue for switched singular discrete-time systems with sensor failures. The persistent dwell-time switching regularity is utilised to describe the successive occurrence of slow switching and fast switching in a switched singular system. A set of variables, which take values in a fixed interval, are utilised for the quantitative analysis of the sensor failures. The main objective is centred on designing a reliable mode-dependent filter which can ensure that the resulting filtering error system is exponentially admissible and simultaneously satisfies the extended dissipative property in the presence of sensor failures. By adopting suitable decoupling methods and introducing reasonable matrix transformation techniques, some relaxed sufficient conditions are derived. The filter gains can be obtained by solving a convex optimisation problem in terms of linear matrix inequalities. Finally, an illustrative example is presented to verify the applicability of the designed filter.

References

    1. 1)
      • 1. Shu, Z., Lam, J.: ‘Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays’, Int. J. Control, 2008, 81, (6), pp. 865882.
    2. 2)
      • 2. Wu, L., Shi, P., Gao, H.: ‘State estimation and sliding-mode control of Markovian jump singular systems’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 12131219.
    3. 3)
      • 3. Kao, Y., Xie, J., Wang, C.: ‘Stabilization of singular Markovian jump systems with generally uncertain transition rates’, IEEE Trans. Autom. Control, 2014, 59, (9), pp. 26042610.
    4. 4)
      • 4. Li, F., Du, C., Yang, C., et al: ‘Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems’, IEEE Trans. Autom. Control, 2018, 63, (8), pp. 27152721.
    5. 5)
      • 5. Perev, K., Shafai, B.: ‘Balanced realization and model reduction of singular systems’, Int. J. Syst. Sci., 1994, 25, (6), pp. 10391052.
    6. 6)
      • 6. Xu, S., Lam, J.: ‘Robust stability and stabilization of discrete singular systems: an equivalent characterization’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 568573.
    7. 7)
      • 7. Shen, H., Li, F., Xu, S., et al: ‘Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations’, IEEE Trans. Autom. Control, 2018, 63, (8), pp. 27092714.
    8. 8)
      • 8. Ma, S., Cheng, Z., Zhang, C.: ‘Delay-dependent robust stability and stabilisation for uncertain discrete singular systems with time-varying delays’, IET Control Theory Appl., 2007, 1, (4), pp. 10861095.
    9. 9)
      • 9. Song, X., Wang, Z., Shen, H., et al: ‘A unified method to energy-to-peak filter design for networked Markov switched singular systems over a finite-time interval’, J. Franklin Inst., 2017, 354, (17), pp. 78997916.
    10. 10)
      • 10. Wang, Y., Shi, P., Wang, Q., et al: ‘Exponential H filtering for singular Markovian jump systems with mixed mode-dependent time-varying delay’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (9), pp. 24402452.
    11. 11)
      • 11. Wu, Z.G., Park, J.H., Su, H., et al: ‘Stochastic stability analysis for discrete-time singular Markov jump systems with time-varying delay and piecewise-constant transition probabilities’, J. Franklin Inst., 2012, 349, (9), pp. 28892902.
    12. 12)
      • 12. Xu, S., Van Dooren, P., Stefan, R., et al: ‘Robust stability and stabilization for singular systems with state delay and parameter uncertainty’, IEEE Trans. Autom. Control, 2002, 47, (7), pp. 11221128.
    13. 13)
      • 13. Zhuang, G., Ma, Q., Zhang, B., et al: ‘Admissibility and stabilization of stochastic singular Markovian jump systems with time delays’, Syst. Control Lett., 2018, 114, pp. 110.
    14. 14)
      • 14. Wang, Z., Shen, L., Xia, J., et al: ‘Finite-time non-fragile l2-l control for jumping stochastic systems subject to input constraints via an event-triggered mechanism’, J. Franklin Inst., 2018, 355, (14), pp. 63716389.
    15. 15)
      • 15. Ma, D., Zhao, J.: ‘Stabilization of networked switched linear systems: an asynchronous switching delay system approach’, Syst. Control Lett., 2015, 77, pp. 4654.
    16. 16)
      • 16. Zhao, Y., Ma, D., Zhao, J.: ‘Almost output regulation bumpless transfer control for switched linear systems’, IET Control Theory Appl., 2018, 12, (14), pp. 19321940.
    17. 17)
      • 17. Liu, Y., Niu, Y., Zou, Y., et al: ‘Adaptive sliding mode reliable control for switched systems with actuator degradation’, IET Control Theory Appl., 2015, 9, (8), pp. 11971204.
    18. 18)
      • 18. Jiao, S., Shen, H., Wei, Y., et al: ‘Further results on dissipativity and stability analysis of Markov jump generalized neural networks with time-varying interval delays’, Appl. Math. Comput., 2018, 336, pp. 338350.
    19. 19)
      • 19. Wang, G., Zhang, Q.: ‘Robust control of uncertain singular stochastic systems with Markovian switching via proportional-derivative state feedback’, IET Control Theory Appl., 2012, 6, (8), pp. 10891096.
    20. 20)
      • 20. Wang, J., Ru, T., Xia, J., et al: ‘Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: an H event-triggered control scheme’, Appl. Math. Comput., 2019, 356, pp. 235251.
    21. 21)
      • 21. Xing, M., Shen, H., Wang, Z.: ‘Synchronization of semi-Markovian jump neural networks with randomly occurring time-varying delays’, Complexity,2018, Article ID 8094292, 16 pages.
    22. 22)
      • 22. Shen, H., Men, Y., Wu, Z.G., et al: ‘Nonfragile H control for fuzzy Markovian jump systems under fast sampling singular perturbation’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (12), pp. 20582069.
    23. 23)
      • 23. Liu, Y., Ma, Y., Wang, Y.: ‘Reliable sliding mode finite-time control for discrete-time singular Markovian jump systems with sensor fault and randomly occurring nonlinearities’, Int. J. Robust Nonlinear Control, 2018, 28, (2), pp. 381402.
    24. 24)
      • 24. Liu, G., Xu, S., Park, J.H., et al: ‘Reliable exponential filtering for singular Markovian jump systems with time-varying delays and sensor failures’, Int. J. Robust Nonlinear Control, 2018, 28, (14), pp. 42304245.
    25. 25)
      • 25. Shen, H., Su, L., Park, J.H.: ‘Extended passive filtering for discrete-time singular Markov jump systems with time-varying delays’, Signal Process., 2016, 128, pp. 6877.
    26. 26)
      • 26. Zhong, G.X., Yang, G.H.: ‘Robust control and fault detection for continuous-time switched systems subject to a dwell time constraint’, Int. J. Robust Nonlinear Control, 2015, 25, (18), pp. 37993817.
    27. 27)
      • 27. Zhai, G., Hu, B., Yasuda, K., et al: ‘Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach’, Int. J. Syst. Sci., 2001, 32, (8), pp. 10551061.
    28. 28)
      • 28. Hespanha, J.P.: ‘Uniform stability of switched linear systems: extensions of LaSalle's invariance principle’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 470482.
    29. 29)
      • 29. Hou, Y., Zhu, F., Zhao, X., et al: ‘Observer design and unknown input reconstruction for a class of switched descriptor systems’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (8), pp. 14111419.
    30. 30)
      • 30. Zhang, D., Yu, L., Wang, Q.G., et al: ‘Exponential H filtering for discrete-time switched singular systems with time-varying delays’, J. Franklin Inst., 2012, 349, (7), pp. 23232342.
    31. 31)
      • 31. Zhang, L., Zhu, Y., Shi, P., et al: ‘Time-dependent switched discrete-time linear systems: control and filtering’ (Springer, Cham, Switzerland, 2016).
    32. 32)
      • 32. Han, T.T., Ge, S.S., Lee, T.H.: ‘Persistent dwell-time switched nonlinear systems: variation paradigm and gauge design’, IEEE Trans. Autom. Control, 2010, 55, (2), pp. 321337.
    33. 33)
      • 33. Choi, H.D., Ahn, C.K., Karimi, H.R., et al: ‘Filtering of discrete-time switched neural networks ensuring exponential dissipative and l2l performances’, IEEE Trans. Cybern., 2017, 47, (10), pp. 31953207.
    34. 34)
      • 34. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, Berlin, 2006).
    35. 35)
      • 35. Wang, Z., Liu, Y., Liu, X.: ‘State estimation for jumping recurrent neural networks with discrete and distributed delays’, Neural Netw., 2009, 22, (1), pp. 4148.
    36. 36)
      • 36. Wang, J., Ma, S., Zhang, C., et al: ‘Finite-time H filtering for nonlinear singular systems with nonhomogeneous Markov jumps’, IEEE Trans. Cybern., 2019, 49, (6), pp. 21332143.
    37. 37)
      • 37. Xiang, W., Zhai, G., Briat, C.: ‘Stability analysis for LTI control systems with controller failures and its application in failure tolerant control’, IEEE Trans. Autom. Control, 2016, 61, (3), pp. 811816.
    38. 38)
      • 38. Zhou, B., Liu, Q., Mazenc, F.: ‘Stabilization of linear systems with both input and state delays by observer-predictors’, Automatica, 2017, 83, pp. 368377.
    39. 39)
      • 39. Mathiyalagan, K., Park, J.H., Sakthivel, R.: ‘Robust reliable dissipative filtering for networked control systems with sensor failure’, IET Signal Process., 2014, 8, (8), pp. 809822.
    40. 40)
      • 40. Su, X., Shi, P., Wu, L., et al: ‘Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems’, IEEE Trans. Cybern., 2014, 44, (12), pp. 24702483.
    41. 41)
      • 41. Wu, Z.G., Dong, S., Su, H., et al: ‘Asynchronous dissipative control for fuzzy Markov jump systems’, IEEE Trans. Cybern., 2018, 48, (8), pp. 24262436.
    42. 42)
      • 42. Zhao, H., Xu, S., Zou, Y.: ‘Robust H filtering for uncertain Markovian jump systems with mode-dependent distributed delays’, Int. J. Adapt. Control Signal Process, 2010, 24, (1), pp. 8394.
    43. 43)
      • 43. Zhang, B., Zheng, W.X., Xu, S.: ‘Filtering of Markovian jump delay systems based on a new performance index’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (5), pp. 12501263.
    44. 44)
      • 44. Mathiyalagan, K., Park, J.H., Sakthivel, R., et al: ‘Robust mixed H and passive filtering for networked Markov jump systems with impulses’, Signal Proc., 2014, 101, pp. 162173.
    45. 45)
      • 45. Wu, Z.G., Park, J.H., Su, H., et al: ‘H filtering for discrete-time singular systems with randomly occurring delays and sensor failures’, IET Control Theory Appl., 2012, 6, (14), pp. 23082317.
    46. 46)
      • 46. Feng, Z., Lam, J.: ‘Robust reliable dissipative filtering for discrete delay singular systems’, Signal Process., 2012, 92, (12), pp. 30103025.
    47. 47)
      • 47. Morse, A.S.: ‘Supervisory control of families of linear set-point controllers-part I. Exact matching’, IEEE Trans. Autom. Control, 1996, 41, (10), pp. 14131431.
    48. 48)
      • 48. Zhang, K., Jiang, B., Cocquempot, V.: ‘Distributed fault estimation observer design for multi-agent systems with switching topologies’, IET Control Theory Appl., 2017, 11, (16), pp. 28012807.
    49. 49)
      • 49. Dong, H., Wang, Z., Ho, D.W.C., et al: ‘Robust H fuzzy output-feedback control with multiple probabilistic delays and multiple missing measurements’, IEEE Trans. Fuzzy Syst., 2010, 18, (4), pp. 712725.
    50. 50)
      • 50. Shen, H., Huo, S., Cao, J., et al: ‘Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels’, IEEE Trans. Cybern., 2019, 49, (4), pp. 12921301.
    51. 51)
      • 51. Shen, Y., Wu, Z.G., Shi, P., et al: ‘H control of Markov jump time-delay systems under asynchronous controller and quantizer’, Automatica, 2019, 99, pp. 352360.
    52. 52)
      • 52. Wu, Z.G., Dong, S., Shi, P., et al: ‘Reliable filter design of takagi-sugeno fuzzy switched systems with imprecise modes’, IEEE Trans. Cybern., 2019, in press, DOI: 10.1109/TCYB.2018.2885505, to appear.
    53. 53)
      • 53. Dong, S., Fang, M., Shi, P., et al: ‘Dissipativity-based control for fuzzy systems with asynchronous modes and intermittent measurements’, IEEE Trans. Cybern., 2019, in press, DOI: 10.1109/TCYB.2018.2887060, to appear.
    54. 54)
      • 54. Shen, H., Men, Y., Wu, Z.G., et al: ‘Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2019, 66, (3), pp. 11301140.
    55. 55)
      • 55. Shen, H., Li, F., Wu, Z.G., et al: ‘Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters’, IEEE Trans. Fuzzy Syst., 2018, 26, (6), pp. 34283439.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6376
Loading

Related content

content/journals/10.1049/iet-cta.2018.6376
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address