access icon free PDE modelling and vibration control of overhead crane bridge with unknown control directions and parametric uncertainties

In this study, problems of the partial differential equation (PDE) modelling and vibration control design are first resolved for an overhead crane bridge system, which is regarded as a Timoshenko beam with an attached rigid body. With the established infinite-dimensional PDE model, a Nussbaum function-based adaptive control approach is developed in order to settle out parametric uncertainties of the system with unknown control directions. Under the proposed control method, states of the overhead crane bridge are globally bounded and finally converge to an adjustable region of zero. The stability of the closed-loop overhead crane bridge system is analysed by employing Lyapunov's direct method. The effectiveness of the developed control strategy is verified through the simulation results.

Inspec keywords: stability; partial differential equations; nonlinear control systems; adaptive control; vibration control; uncertain systems; control system synthesis; feedback; closed loop systems; beams (structures); cranes; Lyapunov methods

Other keywords: infinite-dimensional PDE model; parametric uncertainties; closed-loop overhead crane bridge system; Lyapunov direct method; vibration control design; stability; Timoshenko beam; control method; partial differential equation modelling; Nussbaum function-based adaptive control approach; unknown control directions; attached rigid body

Subjects: Differential equations (numerical analysis); General shapes and structures; Mechanical variables control; Nonlinear control systems; Control applications to materials handling; Vibrations and shock waves (mechanical engineering); Materials handling equipment; Control system analysis and synthesis methods; Stability in control theory; Control technology and theory (production); Self-adjusting control systems; Numerical analysis

References

    1. 1)
      • 32. Zhang, J.-X., Yang, G.-H.: ‘Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65296535.
    2. 2)
      • 11. Zhao, Z., Ahn, C.K, Li, H.-X.: ‘Boundary antidisturbance control of a spatially nonlinear flexible string system’, IEEE Transactions on Industrial Electronics, 2019, pp. 11, in press, DOI: 10.1109/TIE.2019.2931230.
    3. 3)
      • 36. Paranjape, A.A., Guan, J., Chung, S.J., et al: ‘PDE boundary control for flexible articulated wings on a robotic aircraft’, IEEE Trans. Robot., 2013, 29, (3), pp. 625640.
    4. 4)
      • 15. Hamdy, M., Raafat, S., Mostafa, S.: ‘A hybrid partial feedback linearization and deadbeat control scheme for a nonlinear gantry crane’, J. Franklin Inst., 2018, 355, (14), pp. 62866299.
    5. 5)
      • 31. Ye, X.: ‘Asymptotic regulation of time-varying uncertain nonlinear systems with unknown control directions’, Automatica, 1999, 35, (5), pp. 929935.
    6. 6)
      • 39. Rahn, C.D.: ‘Mechatronic control of distributed noise and vibration: a Lyapunov approach’ (Springer Press, Germany, 2001).
    7. 7)
      • 40. Hardy, G.H., Littlewood, J.E., Polya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, 1959).
    8. 8)
      • 17. Ma, B., Fang, Y., Zhang, Y.: ‘Switching-based emergency braking control for an overhead crane system’, IET Control Theory Applic., 2010, 4, (9), pp. 17391747.
    9. 9)
      • 10. Liu, Y., Guo, F., He, X., et al: ‘Boundary control for an axially moving system with input restriction based on disturbance observers’, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2018, pp. 112, DOI: 10.1109/TSMC.2018.2843523.
    10. 10)
      • 4. Liu, Z., Liu, J., He, W.: ‘Robust adaptive fault tolerant control for a linear cascaded ODE-beam systems’, Automatica, 2018, 98, pp. 4250.
    11. 11)
      • 41. He, W., Ge, S.S.: ‘Cooperative control of a nonuniform gantry crane with constrained tension’, Automatica, 2016, 66, (4), pp. 146154.
    12. 12)
      • 24. Morgul, O.: ‘Dynamic boundary control of the timoshenko beam’, Automatica, 1992, 28, (6), pp. 12551260.
    13. 13)
      • 29. Yang, C., Ge, S.S., Lee, T.H.: ‘Output feedback adaptive control of a class of nonlinear discrete-time systems with unknown control directions’, Automatica, 2009, 45, (1), pp. 270276.
    14. 14)
      • 35. Ye, X., Jiang, J.: ‘Adaptive nonlinear design without a priori knowledge of control directions’, IEEE Trans. Autom. Control, 1998, 43, (11), pp. 16171621.
    15. 15)
      • 42. Nussbaum, R.D.: ‘Some remark on the conjecture in parameter adaptive control’, Syst. Control Lett., 1983, 3, (4), pp. 243246.
    16. 16)
      • 12. Tuan, L.A., Cuong, H.M., Lee, S.-G., et al: ‘Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable’, J. Vib. Control, 2014, 22, (13), pp. 30673078.
    17. 17)
      • 27. Yildirim, K., Kucuk, I.: ‘Active piezoelectric vibration control for a Timoshenko beam’, J. Franklin Inst., 2016, 353, (1), pp. 95107.
    18. 18)
      • 13. Tuan, L.A., Lee, S.-G., Nho, L.C., et al: ‘Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2015, 229, (7), pp. 662674.
    19. 19)
      • 30. Sharma, V.K., Murthy, S.S., Singh, B.: ‘Analysis of switched reluctance motor drive under fault conditions’. Conf. Record of 1998 IEEE Industry Applications Conf.. Thirty-Third IAS Annual Meeting, St. Louis, MO, USA, 1998, pp. 553562.
    20. 20)
      • 43. Wen, C., Zhou, J., Liu, Z., et al: ‘Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16721678.
    21. 21)
      • 18. Christoph, H., Martin, B., Heiner, K.: ‘Modeling the beam deflection of a gantry crane under load’, J. Surv. Eng., 2014, 140, (1), pp. 5259.
    22. 22)
      • 28. Ge, S.S., Yang, C., Lee, T.H.: ‘Adaptive robust control of a class of nonlinear strict-feedback discrete-time systems with unknown control directions’, Syst. Control Lett., 2008, 57, (11), pp. 888895.
    23. 23)
      • 5. Hamdy, M., Abd-Elhaleem, S., Fkirin, M.A.: ‘Adaptive fuzzy predictive controller for a class of networked nonlinear systems with time-varying delay’, IEEE Trans. Fuzzy Syst., 2017, 26, (4), pp. 21352144.
    24. 24)
      • 25. Xu, G., Wang, H.: ‘Stabilisation of Timoshenko beam system with delay in the boundary control’, Int. J. Control, 2013, 86, (6), pp. 11651178.
    25. 25)
      • 14. Le, A.T., Lee, S.-G.: ‘3D cooperative control of tower cranes using robust adaptive techniques’, J. Franklin Inst., 2017, 354, (18), pp. 83338357.
    26. 26)
      • 37. He, W., Zhang, S.: ‘Control design for nonlinear flexible wings of a robotic aircraft’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 351357.
    27. 27)
      • 21. Oguamanam, D.C.D., Hansen, J.S., Heppler, G.R.: ‘Dynamic response of an overhead crane system’, J. Sound Vib., 1998, 213, (5), pp. 889906.
    28. 28)
      • 20. Du, W., Lu, F., Liu, T.: ‘Folding-boom lorry crane dynamic modeling and motion control’, Adv. Mater. Res., 2014, 945-949, pp. 646652.
    29. 29)
      • 23. Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., et al: ‘Lyapunov based control of mechanical systems’ (Springer Press, USA, 2000).
    30. 30)
      • 19. Gerdemeli, I., Esen, I., Ozer, D.: ‘Dynamic response of an overhead crane beam due to a moving mass using moving finite element approximation’, Key Eng. Mater., 2011, 450, pp. 99102.
    31. 31)
      • 22. Oguamanam, D.C.D., Hansen, J.S., Heppler, G.R.: ‘Dynamics of a three-dimensional overhead crane system’, J. Sound Vib., 2001, 242, (3), pp. 411426.
    32. 32)
      • 7. Do, K.D.: ‘Boundary control of transverse motion of flexible marine risers under stochastic loads’, Ocean Eng., 2018, 155, pp. 156172.
    33. 33)
      • 16. Sun, N., Fang, Y., Chen, H., et al: ‘Adaptive nonlinear crane control with load hoisting/Lowering and unknown parameters: design and experiments’, IEEE/ASME Trans. Mechatronics, 2015, 20, (5), pp. 21072119.
    34. 34)
      • 8. Liu, Z., Liu, J., He, W.: ‘Dynamic modeling and vibration control for a nonlinear three-dimensional flexible manipulator’, Int. J. Robust Nonlinear Control, 2018, 28, (13), pp. 39273945.
    35. 35)
      • 2. Yang, C., Luo, J., Pan, Y., et al: ‘Personalized variable gain control with tremor attenuation for robot teleoperation’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (10), pp. 17591770.
    36. 36)
      • 33. Li, Y., Tong, S., Li, T.: ‘Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead-zones’, IEEE Trans. Fuzzy Syst., 2015, 23, (4), pp. 12281241.
    37. 37)
      • 3. He, W., Meng, T., He, X., et al: ‘Unified iterative learning control for flexible structures with input constraints’, Automatica, 2018, 86, pp. 326336.
    38. 38)
      • 6. Hamdy, M., Abd-Elhaleem, S., Fkirin, M.A.: ‘Time-varying delay compensation for a class of nonlinear control systems over network via adaptive fuzzy controller’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 47, (8), pp. 21142124.
    39. 39)
      • 9. Krstic, M., Smyshlyaev, A.: ‘Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays’, Syst. Control Lett., 2008, 57, (9), pp. 750758.
    40. 40)
      • 26. He, W., Zhang, S., Ge, S.S., et al: ‘Adaptive boundary control for a class of inhomogeneous Timoshenko beam equations with constraints’, IET Control Theory Applic., 2014, 8, (14), pp. 12851292.
    41. 41)
      • 1. He, W., Ouyang, Y., Hong, J.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 4859.
    42. 42)
      • 34. Labiod, S., Guerra, T.M.: ‘Indirect adaptive fuzzy control for a class of nonaffine nonlinear systems with unknown control directions’, Int. J. Control Autom. Syst., 2010, 8, (4), pp. 903907.
    43. 43)
      • 38. He, J.-H: ‘Hamilton's principle for dynamical elasticity’, Appl. Math. Lett., 2017, 72, pp. 6569.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6345
Loading

Related content

content/journals/10.1049/iet-cta.2018.6345
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading