Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Approximate optimal estimation based on Kullback–Leibler divergence for lossy networks without acknowledgement

This study is concerned with the estimation problem for systems with both missing inputs and measurements but without any acknowledgement mechanism. The acknowledgement mechanism is used to provide the estimator with the status information that whether the input is lost or not during the transmission. Affected by the missing input with unknown status information, the probability density function of system state is a Gaussian mixture, of which the number of terms is growing exponentially with time. Two major limitations of state estimation for these systems are (i) the computational inefficiency of the optimal estimation and (ii) the undetermined stability of the approximate optimal estimation. Thus, the aim of this study is to design an estimator such that it can enhance computational efficiency greatly while its stability can be guaranteed simultaneously. Using Kullback–Leiber divergence, an approximate optimal estimator, which is named as the KLD estimator, is developed as an efficient alternative to the optimal one. By establishing a Riccati-like equation subject to both-side packet dropouts, a sufficient and necessary condition is given for the stability of the KLD estimator. It reveals an interesting fact that the proposed approximate optimal estimator has the same stability as the optimal estimator.

References

    1. 1)
      • 1. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘Fast Kalman-like optimal unbiased FIR filtering with applications’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22842297.
    2. 2)
      • 24. Rutkowski, T.M.: ‘Robotic and virtual reality BCIs using spatial tactile and auditory oddball paradigms’, Front. Neurorobot., 2016, 10, p. 20.
    3. 3)
      • 19. Wang, G., Chen, J., Sun, J.: ‘Stochastic stability of extended filtering for non-linear systems with measurement packet losses’, IET Control Theory Applic., 2013, 7, (17), pp. 20482055.
    4. 4)
      • 8. Wang, F.Y., Liu, D.: ‘‘Networked Control Systems: theory and Applications’ (Springer Publishing Company, Incorporated, London, 2008).
    5. 5)
      • 30. Coifman, R.R., Wickerhauser, M.V.: ‘Entropy-based algorithms for best basis selection’, IEEE Trans. Inf. Theory, 1992, 38, (2), pp. 713718.
    6. 6)
      • 21. Hu, J., Wang, Z., Alsaadi, F.E., et al: ‘Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities’, Inf. Fusion, 2017, 38, pp. 7483.
    7. 7)
      • 16. Lin, H., Su, H., Shu, Z., et al: ‘Optimal estimation in UDP-like networked control systems with intermittent inputs: stability analysis and suboptimal filter design’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 17941809.
    8. 8)
      • 12. Schenato, L., Sinopoli, B., Franceschetti, M., et al: ‘Foundations of control and estimation over lossy networks’, Proc. IEEE, 2007, 95, (1), pp. 163187.
    9. 9)
      • 7. Liu, X.F., Shahriar, M.R., Al-Sunny, S.N., et al: ‘Cyber-physical manufacturing cloud: architecture, virtualization, communication, and testbed’, J. Manuf. Syst., 2017, 43, pp. 352364.
    10. 10)
      • 2. Chaojun, G., Jirutitijaroen, P., Motani, M.: ‘Detecting false data injection attacks in AC state estimation’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 24762483.
    11. 11)
      • 22. Zou, L., Wang, Z., Hu, J., et al: ‘On H finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 48844890.
    12. 12)
      • 11. Guo, Y.: ‘Switched filtering for networked systems with multiple packet dropouts’, J. Franklin Inst., 2017, 354, (7), pp. 31343151.
    13. 13)
      • 28. Li, X.R., Bar-Shalom, Y.: ‘Performance prediction of the interacting multiple model algorithm’, IEEE Trans. Aerosp. Electron. Syst., 1993, 29, (3), pp. 755771.
    14. 14)
      • 17. Lin, H., Su, H., Chen, M.Z., et al: ‘On stability and convergence of optimal estimation for networked control systems with dual packet losses without acknowledgment’, Automatica, 2018, 90, pp. 8190.
    15. 15)
      • 3. Thrun, S., Burgard, W., Fox, D.: ‘Probabilistic robotics (intelligent robotics and autonomous agents)’ (The MIT Press, Cambridge, 2005).
    16. 16)
      • 32. Speyer, J.L.: ‘Stochastic Processes, Estimation, and Control’ (Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008).
    17. 17)
      • 23. Lum, M.J., Friedman, D.C., Sankaranarayanan, G., et al: ‘The raven: design and validation of a telesurgery system’, Int. J. Robot. Res., 2009, 28, (9), pp. 11831197.
    18. 18)
      • 6. Yin, S., Zhu, X.: ‘Intelligent particle filter and its application to fault detection of nonlinear system’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 38523861.
    19. 19)
      • 33. Horn, R.A., Johnson, C.R.: ‘Matrix Analysis’ (Cambridge University Press, Cambridge, 1986).
    20. 20)
      • 4. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: ‘Estimation with applications to tracking and navigation: theory algorithms and software’ (John Wiley & Sons, Hoboken, 2004).
    21. 21)
      • 5. Wang, D., Wang, Z., Shen, B., et al: ‘Recent advances on filtering and control for cyber-physical systems under security and resource constraints’, J. Franklin Inst., 2016, 353, (11), pp. 24512466.
    22. 22)
      • 20. Su, X., Xia, F., Yang, R., et al: ‘Reduced-order filter design of T–S fuzzy stochastic systems with time-varying delay’, J. Franklin Inst., 2017, 354, (5), pp. 23102339.
    23. 23)
      • 26. Xiao, Z.H., Xu, G.H., Peng, F.Y., et al: ‘Development of a deep ocean electric autonomous manipulator’, China Ocean Eng., 2011, 25, (1), pp. 159168.
    24. 24)
      • 18. Mo, Y., Sinopoli, B: ‘A characterization of the critical value for Kalman filtering with intermittent observations’. IEEE 47th IEEE Conf. on Decision and Control (CDC 2008), Cancun, Mexico, 2008, pp. 26922697.
    25. 25)
      • 27. Lin, H., Su, H., Shi, P., et al: ‘Optimal estimation and control for lossy network: stability, convergence, and performance’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 45644579.
    26. 26)
      • 15. Ploplys, N.J., Alleyne, A.G.: ‘UDP network communications for distributed wireless control’. IEEE Proc. of the 2003 American Control Conf., Denver, USA, 2003, vol. 4, pp. 33353340.
    27. 27)
      • 31. Runnalls, A.R.: ‘Kullback-Leibler approach to Gaussian mixture reduction’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3).
    28. 28)
      • 1. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘Fast Kalman-like optimal unbiased FIR filtering with applications’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22842297.
    29. 29)
      • 13. Nahi, N.: ‘Optimal recursive estimation with uncertain observation’, IEEE Trans. Inf. Theory, 1969, 15, (4), pp. 457462.
    30. 30)
      • 25. Dura-Bernal, S., Chadderdon, G.L., Neymotin, S.A., et al: ‘Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm’, Pattern Recognit. Lett., 2014, 36, pp. 204212.
    31. 31)
      • 29. Epstein, M., Shi, L., Murray, R.M.: ‘Estimation schemes for networked control systems using UDP-like communication’. IEEE 2007 46th IEEE Conf. on Decision and Control, New Orleans, USA, 2007, pp. 39453951.
    32. 32)
      • 14. Sinopoli, B., Schenato, L., Franceschetti, M., et al: ‘Kalman filtering with intermittent observations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14531464.
    33. 33)
      • 9. Kar, S., Moura, J.M.: ‘Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise’, IEEE Trans. Signal Process., 2009, 57, (1), pp. 355369.
    34. 34)
      • 10. Ding, D., Wang, Z., Shen, B., et al: ‘Event-triggered distributed H state estimation with packet dropouts through sensor networks’, IET Control Theory Applic., 2015, 9, (13), pp. 19481955.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6302
Loading

Related content

content/journals/10.1049/iet-cta.2018.6302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address