access icon free Fuzzy gear shifting control optimisation to improve vehicle performance, fuel consumption and engine emissions

This study presents a multiobjective optimisation applied to the gear shifting fuzzy control of a vehicle equipped with an automated manual transmission (AMT), aiming to improve acceleration performance and reduce engine fuel consumption and emissions. An Adaptive-Weight Genetic Algorithm was employed to find optimum fuzzy membership functions, according to the input and output ranges, and also optimum control rules with their respective weights. The vehicle behaviour is represented by longitudinal dynamics simulations developed in Simulink/Matlab interface, associated with the ADVISOR fuel converter block, that provides the engine emissions and fuel consumption. These simulations were based on the FTP-75 emissions test procedure, that considers cold and hot phases of the driving cycle evaluating the engine transient operation as a function of the catalyst efficiency during the warm-up period. The optimum fuzzy control with the best trade-off among the optimisation criteria presented 19.72% fuel saving associated with 12.90% hydrocarbon, 29.20% carbon monoxide and 17.02% nitrogen oxides emissions reduction and an acceleration performance improvement when compared to a standard gear shifting procedure for a manual controlled gearbox. Moreover, the optimised fuzzy gear shifting control, improves the relationship between fuel consumption and emissions significantly, when compared to another optimum AMT control based on speed limits only.

Inspec keywords: genetic algorithms; hybrid electric vehicles; power transmission (mechanical); optimal control; engines; vehicle dynamics; fuzzy set theory; fuzzy control; road vehicles; gears; air pollution control; fuel economy

Other keywords: optimum fuzzy control; engine transient operation; acceleration performance improvement; automated manual transmission; nitrogen oxides emissions reduction; FTP-75 emissions test procedure; optimum fuzzy membership functions; optimisation criteria; adaptive-weight genetic algorithm; longitudinal dynamics simulations; vehicle behaviour; multiobjective optimisation; fuel converter block; optimum AMT control; carbon monoxide; vehicle performance; standard gear shifting procedure; manual controlled gearbox; output ranges; engine fuel consumption; engine emissions; optimised fuzzy gear shifting control; control optimisation; optimum control rules

Subjects: Optimisation techniques; Vehicle mechanics; Mechanical drives and transmissions; Road-traffic system control; Transportation; Engines; Control technology and theory (production); Combinatorial mathematics; Mechanical components; Fuzzy control; Combinatorial mathematics; Environmental issues; Optimisation techniques; Combinatorial mathematics; Optimal control; Optimisation

References

    1. 1)
      • 21. Abu-Mallouh, M., Surgenor, B., Denman, B., Peppley, B.: ‘Analysis and validation of a powertrain system analysis toolkit model of a fuel cell hybrid rickshaw’, Int. J. Energy Res., 2011, 35, (15), pp. 13891398.
    2. 2)
      • 1. Jia, S., Yan, G., Shen, A.: ‘Traffic and emissions impact of the combination scenarios of air pollution charging fee and subsidy’, J. Cleaner Prod., Part 1, 2018, 197, pp. 678689.
    3. 3)
      • 18. Chiou, Y.C., Lan, L.W.: ‘Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method’, Fuzzy Sets Syst., 2005, 152, (3), pp. 617635.
    4. 4)
      • 9. Kan, Z., Tang, L., Kwan, M.P., et al: ‘Fine-grained analysis on fuel-consumption and emission from vehicles trace’, J. Clean Prod., 2018, 203, pp. 340352.
    5. 5)
      • 10. Eckert, J.J., Santiciolli, F.M., Bertoti, E., et al: ‘Gear shifting multi-objective optimization to improve vehicle performance, fuel consumption, and engine emissions’, Mech. Based Des. Struct. Mach., 2018, 46, (2), pp. 238253.
    6. 6)
      • 11. Eckert, J.J., Silva, L.C.d.A.e., Costa, E.d.S., et al: ‘Optimization of electric propulsion system for a hybridized vehicle’, Mech. Based Des. Struct. Mach., 2019, 47, (2), pp. 175200.
    7. 7)
      • 17. Yang, J., Na, J., Guo, Y., et al: ‘Adaptive estimation of road gradient and vehicle parameters for vehicular systems’, IET Control Theory Applic., 2015, 9, (6), pp. 935943.
    8. 8)
      • 8. Oglieve, C.J., Mohammadpour, M., Rahnejat, H.: ‘Optimisation of the vehicle transmission and the gear-shifting strategy for the minimum fuel consumption and the minimum nitrogen oxide emissions’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2017, 231, (7), pp. 883899.
    9. 9)
      • 15. Zhang, H., Bien, Z.: ‘Adaptive fuzzy control of MIMO nonlinear systems’, Fuzzy Sets Syst., 2000, 115, (2), pp. 191204.
    10. 10)
      • 3. Van Fan, Y., Perry, S., Klemeš, J.J., et al: ‘A review on air emissions assessment: transportation’, J. Clean Prod., 2018, 194, pp. 673684.
    11. 11)
      • 24. Giakoumis, E.G.: ‘Driving and engine cycles’ (Springer, 2017).
    12. 12)
      • 19. Eckert, J.J., Silva, L.C.A., Santiciolli, F.M., et al: ‘Energy storage and control optimization for an electric vehicle’, Int. J. Energy Res., 2018, 44, (11), pp. 35063523.
    13. 13)
      • 5. Yin, H., Liu, Z.: ‘Fuel–air ratio control for a spark ignition engine using gain-scheduled delay-dependent approach’, IET Control Theory Applic., 2015, 9, (12), pp. 18101820.
    14. 14)
      • 14. Krithika, V., Subramani, C.: ‘A comprehensive review on choice of hybrid vehicles and power converters, control strategies for hybrid electric vehicles’, Int. J. Energy Res., 2018, 42, (5), pp. 17891812.
    15. 15)
      • 28. Aaron, B., Haraldsson, K., Hendricks, T., et al: ‘Advisor: a systems analysis tool for advanced vehicle modeling’ (National Renewable Energy Laboratory, Denver, 2013).
    16. 16)
      • 20. Gillespie, T.D.: ‘Fundamentals of vehicle dynamics’ (Society of Automotive Engineers - SAE, Warrendale, 1992).
    17. 17)
      • 23. Barlow, T.J., Latham, S., McCrae, I., et al: ‘A reference book of driving cycles for use in the measurement of road vehicle emissions’ (Transportation Research Laboratory (TRL), Wokingham, Berkshire, UK, 2009).
    18. 18)
      • 30. Eckert, J.J., Santiciolli, F.M., Silva, L.C., et al: ‘Co-simulation to evaluate acceleration performance and fuel consumption of hybrid vehicles’, J. Braz. Soc. Mech. Sci. Eng., 2017, 39, (1), pp. 5366.
    19. 19)
      • 27. Eckert, J.J., Corrêa, F.C., Santiciolli, F.M., et al: ‘Vehicle gear shifting strategy optimization with respect to performance and fuel consumption’, Mech. Based Des. Struct. Mach., 2016, 44, (1-2), pp. 123136.
    20. 20)
      • 25. Reimpell, J., Stoll, H., Betzler, J.: ‘The automotive chassis: engineering principles’ (Butterworth-Heinemann, Woburn, 2001).
    21. 21)
      • 4. Matulić, N., Radica, G., Nižetić, S.: ‘Thermodynamic analysis of active modular internal combustion engine concept: targeting efficiency increase and carbon dioxide emissions reduction of gasoline engines’, Int. J. Energy Res., 2018, 42, (9), pp. 30173029.
    22. 22)
      • 16. Guo, H., Chen, H., Cao, D., et al: ‘Design of a reduced-order non-linear observer for vehicle velocities estimation’, IET Control Theory Applic., 2013, 7, (17), pp. 20562068.
    23. 23)
      • 7. Zhang, L., Zhang, X., Han, Z., et al: ‘A novel multi-parameter coordinated shift control strategy for an automated manual transmission based on fuzzy inference’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2017, 231, (5), pp. 684699.
    24. 24)
      • 22. NBR6601.Light road motor vehicles – determination of hydrocarbons, carbon monoxide, nitrogen oxides, carbon dioxides and particulate matter in the exhaust gas’. ABNT, Rio de Janeiro, Brazil, 2012.
    25. 25)
      • 6. Zapata, C., Nieuwenhuis, P.: ‘Exploring innovation in the automotive industry: new technologies for cleaner cars’, J. Clean Prod., 2010, 18, (1), pp. 1420.
    26. 26)
      • 29. Gen, M., Cheng, R., Lin, L.: ‘Network models and optimization: multiobjective genetic algorithm approach’ (Springer Science & Business Media, London, 2008).
    27. 27)
      • 2. Habich-Sobiegalla, S., Kostka, G., Anzinger, N.: ‘Electric vehicle purchase intentions of chinese, russian and brazilian citizens: an international comparative study’, J. Clean Prod., 2018, 205, pp. 188200.
    28. 28)
      • 26. Genta, G., Morello, L.: ‘The automotive chassis’, vol. 1 (Springer, Dordrecht, 2009).
    29. 29)
      • 13. General Motors: ‘Owner manual Chevrolet Celta 2013’, (Technical report, Brazil, 2013).
    30. 30)
      • 12. Zhe, L., Xiaohui, L., Qifang, L., et al: ‘Optimization of dual clutch transmission shift schedule based on fuzzy algorithm’. 2017 32nd Youth Academic Annual Conf. of Chinese Association of Automation (YAC), Hefei, China, 2017, pp. 12771282.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6272
Loading

Related content

content/journals/10.1049/iet-cta.2018.6272
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading