http://iet.metastore.ingenta.com
1887

Linear sliding variable-based sliding mode controller design of descriptor systems via output information

Linear sliding variable-based sliding mode controller design of descriptor systems via output information

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the design problem of the linear sliding variable-based sliding mode controllers of descriptor systems via output information. A generalised regular form, which is the counterpart of that for normal systems, is first recalled. Then a static output feedback sliding mode control strategy is developed to stabilise the descriptor system under consideration and the result is further improved by a reduced-order observer-based sliding mode control strategy. Necessary and sufficient conditions are derived such that the resulting sliding motion is regular and asymptotically stable. It is shown that the main merit of the static output feedback sliding mode control method is the simplicity and that of the reduced-order observer-based sliding mode control method is the elimination of a restrictive assumption frequently used in the static output feedback sliding mode control method. Finally, two connected one-mass oscillators model is numerically simulated to testify the validity of the proposed methods.

References

    1. 1)
      • 1. Duan, G.: ‘Analysis and design of descriptor linear systems’ (Springer, New York, 2010).
    2. 2)
      • 2. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, Berlin, 2006).
    3. 3)
      • 3. Liu, M., Zhang, L., Shi, P., et al: ‘Fault estimation sliding mode observer with digital communication constraints’, IEEE Trans. Autom. Control, 2018, 63, (10), pp. 34343441.
    4. 4)
      • 4. Ma, S., Boukas, E.K.: ‘A singular system approach to robust sliding mode control for uncertain Markov jump systems’, Automatica, 2009, 45, (11), pp. 27072713.
    5. 5)
      • 5. Edwards, C., Spurgeon, S.K.: ‘Sliding mode control: theory and applications’ (Taylor & Francis, London, 1998).
    6. 6)
      • 6. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Springer, New York, 2014).
    7. 7)
      • 7. Yao, D., Zhang, B., Li, P., et al: ‘Event-triggered sliding mode control of discrete-time Markov jump systems’, IEEE Trans. Syst. Man Cybern., Syst., DOI: 10.1109/TSMC.2018.2836390.
    8. 8)
      • 8. Liu, Y., Wen, X.: ‘Variable structure control for singular systems’ (The South China University of Technology Press, Guangzhou, 1997).
    9. 9)
      • 9. Jiang, B., Kao, Y., Gao, C.: ‘Passification of uncertain singular semi-Markovian jump systems with actuator failures via sliding mode approach’, IEEE Trans. Autom. Control, 2017, 62, (8), pp. 41384143.
    10. 10)
      • 10. Wang, Y., Xia, Y., Shen, H., et al: ‘SMC design for robust stabilization of nonlinear markovian jump singular systems’, IEEE Trans. Autom. Control, 2018, 63, (1), pp. 219224.
    11. 11)
      • 11. Castaños, F., Hernández, D., Fridman, L.: ‘Integral sliding mode control for linear time-invariant implicit descriptions’. 51st IEEE Conf. Decision Control, 2012, Maui, Hawaii, USA, pp. 64426447.
    12. 12)
      • 12. Li, J., Zhang, Q., Yan, X., et al: ‘Integral sliding mode control for Markovian jump T-S fuzzy descriptor systems based on the super-twisting algorithm’, IET Control Theory Applic., 2017, 11, (8), pp. 11341143.
    13. 13)
      • 13. Zhai, D., An, L., Dong, J., et al: ‘Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching’, IEEE Trans. Fuzzy Syst., 2018, 26, (2), pp. 585597.
    14. 14)
      • 14. Yao, D., Lu, R., Xu, Y., et al: ‘Robust H filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities’, Signal Process., 2017, 137, pp. 328338.
    15. 15)
      • 15. Zhai, D., An, L., Ye, D., et al: ‘Adaptive reliable H static output feedback control against markovian jumping sensor failures’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (3), pp. 631644.
    16. 16)
      • 16. Spurgeon, S.K.: ‘Sliding mode observers: a survey’, Int. J. Syst. Sci., 2008, 39, (8), pp. 751764.
    17. 17)
      • 17. Zhai, D., An, L., Dong, J., et al: ‘Output feedback adaptive sensor failure compensation for a class of parametric strict feedback systems’, Automatica, 2018, 97, pp. 4857.
    18. 18)
      • 18. Edwards, C., Spurgeon, S.K.: ‘Sliding mode stabilization of uncertain systems using only output information’, Int. J. Control, 1995, 62, (5), pp. 11291144.
    19. 19)
      • 19. Edwards, C., Akoachere, A., Spurgeon, S.K.: ‘Sliding-mode output feedback controller design using linear matrix inequalities’, IEEE Trans. Autom. Control, 2001, 46, (1), pp. 115119.
    20. 20)
      • 20. Zhang, J., Xia, Y.: ‘Design of static output feedback sliding mode control for uncertain linear systems’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 21612170.
    21. 21)
      • 21. Yan, X., Edwards, C., Spurgeon, S.K.: ‘Decentralised robust sliding mode control for a class of nonlinear interconnected systems by static output feedback’, Automatica, 2004, 40, (4), pp. 613620.
    22. 22)
      • 22. Seuret, A., Edwards, C., Spurgeon, S.K., et al: ‘Static output feedback sliding mode control design via an artificial stabilizing delay’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 115119.
    23. 23)
      • 23. Han, X.R., Fridman, E., Spurgeon, S.K., et al: ‘On the design of sliding-mode static-output-feedback controllers for systems with state delay’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36563664.
    24. 24)
      • 24. Yan, X., Spurgeon, S.K., Edwards, C.: ‘Decentralised sliding mode control for nonminimum phase interconnected systems based on a reduced-order compensator’, Automatica, 2006, 42, (10), pp. 18211828.
    25. 25)
      • 25. Li, J., Zhang, Q.: ‘An integral sliding mode control approach to observer-based stabilization of stochastic ito^ descriptor systems’, Neurocomputing, 2016, 173, pp. 13301340.
    26. 26)
      • 26. Niu, Y., Lam, J., Wang, X., et al: ‘Observer-based sliding mode control for nonlinear state-delayed systems’, Int. J. Syst. Sci., 2007, 35, (2), pp. 139150.
    27. 27)
      • 27. Yan, X., Spurgeon, S.K., Edwards, C.: ‘Sliding mode control for time-varying delayed systems based on a reduced-order observer’, Automatica, 2010, 46, (8), pp. 13541362.
    28. 28)
      • 28. Li, J., Zhang, Q.: ‘Fuzzy reduced-order compensator-based stabilization for interconnected descriptor systems via integral sliding modes’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (4), pp. 752765, DOI: 10.1109/TSMC.2017.2707499.
    29. 29)
      • 29. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control for nonlinear Markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    30. 30)
      • 30. Ma, S.: ‘Output feedback variable structure control design for singular systems’, 14th Word Congress of IFAC, 1999, 32, (2), pp. 12191224.
    31. 31)
      • 31. Guo, J., Gao, C.: ‘Output variable structure control for time-invariant linear time-delay singular system’, J. Syst. Sci. Complex., 2007, 20, (3), pp. 454460.
    32. 32)
      • 32. Zhang, Q., Li, J.: ‘Static output feedback sliding mode control for stochastic descriptor systems’. Proc. Chinese Control Decison Conf., Yinchuan, China, 2016, pp. 10931097.
    33. 33)
      • 33. Li, J., Zhang, Q.: ‘A linear switching function approach to sliding mode control and observation of descriptor systems’, Automatica, 2018, 95, pp. 112121.
    34. 34)
      • 34. Yeu, T., Kim, H., Kawaji, S.: ‘Fault detection, isolation, and reconstruction for descriptor systems’, Asian J. Control, 2005, 7, (4), pp. 356367.
    35. 35)
      • 35. Ooi, J.H.T., Tan, C.P., Nurzaman, S.G., et al: ‘A sliding mode observer for infinitely unobservable descriptor systems’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 35803587.
    36. 36)
      • 36. Chan, J.C.L., Tan, C.P., Trinh, H., et al: ‘State and fault estimation for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade’, J. Frankl. Inst., 2019, 356, (5), pp. 30103029.
    37. 37)
      • 37. Chan, J.C.L., Tan, C.P., Trinh, H., et al: ‘Robust fault reconstruction for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade’, Appl. Math. Comput., 2019, 350, (1), pp. 7892.
    38. 38)
      • 38. Wu, L., Shi, P., Gao, H.: ‘State estimation and sliding-mode control of Markovian jump singular systems’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 12131219.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6216
Loading

Related content

content/journals/10.1049/iet-cta.2018.6216
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address