© The Institution of Engineering and Technology
This study is to estimate the bounds for the maximum allowable sampling interval (MASI) and the coarsest quantisation density (CQD) that guarantee the stability of nonlinear systems with multiinput signals sampled and logarithmic quantised. First of all, hybrid feedback systems are proposed to describe the nonlinear control systems. Then a sufficient condition is provided to ensure that the systems are uniformly globally exponentially stable. A crucial step is to find a novel Lyapunov function to verify the stability conditions in the sense of the hybrid framework. Meanwhile, explicit bounds for the MASI and CQD are obtained to guarantee stability. Furthermore, in the case of no quantisation or no sampling, some special stability criteria can be also obtained. Finally, some examples are given to illustrate the effectiveness of the proposed theorem.
References


1)

1. Liu, C., Hao, F.: ‘Dynamic outputfeedback control for linear systems by using eventtriggered quantisation’, IET Control Theory Applic., 2015, 9, (8), pp. 1254–1263.

2)

2. Chai, J., Casau, P., Sanfelice, R.G.: ‘Analysis and design of eventtriggered control algorithms using hybrid systems tools’. IEEE 56th Annual Conf. and on Decision and Control (CDC), Melbourne, Australia, December 2017, pp. 6057–6062.

3)

3. Postoyan, R., Tabuada, P., Nesic, D., et al: ‘A framework for the eventtriggered stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2015, 60, (4), pp. 982–996.

4)

4. Fu, J., Li, T.F., Chai, T.Y., et al: ‘Sampleddatabased stabilization of switched linear neutral systems’, Automatica, 2016, 72, (10), pp. 92–99.

5)

5. Wakaiki, M., Yamamoto, Y.: ‘Stability analysis of sampleddata switched systems with quantization’, Automatica, 2016, 69, (7), pp. 157–168.

6)

6. Wakaiki, M., Yamamoto, Y.: ‘Stabilisation of switched systems with sampled and quantised output feedback’, IET Control Theory Applic., 2017, 11, (12), pp. 1913–1921.

7)

7. Wang, X.J., Wen, C.L., Yan, J.J., et al: ‘Quantised stabilisation of continuoustime switched systems with timedelay’, IET Control Theory Applic., 2018, 12, (7), pp. 900–913.

8)

8. Nesic, D., Liberzon, D.: ‘A unified framework for design and analysis of networked and quantized control systems’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 732–747.

9)

9. Zhang, H., Gang, F., Yan, H.C., et al: ‘Sampleddata control of nonlinear networked systems with timedelay and quantization’, Int. J. Robust Nonlinear Control, 2016, 26, (5), pp. 919–933.

10)

10. Niu, Y.J., Dong, W., Ji, Y.D.: ‘State estimation for networked systems with a markov plant in the presence of missing and quantised measurements’, IET Control Theory Applic., 2016, 10, (5), pp. 599–606.

11)

11. Gao, H., Meng, X., Chen, T., et al: ‘Stabilization of networked control systems via dynamic output feedback controllers’, SIAM J. Control Optim., 2009, 48, (5), pp. 3643–3658.

12)

12. Fu, M., Xie, L.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 1698–1711.

13)

13. Kang, X., Ishii, H.: ‘Coarsest quantization for networked control of uncertain linear systems’, Automica, 2015, 51, (51), pp. 1–8.

14)

14. Vu, L., Liberzon, D.: ‘Supervisory control of uncertain systems with quantized information’, Int. J. Adapt. Control Signal Process., 2012, 26, (8), pp. 739–756.

15)

15. Yun, S.W., Choi, Y.J., Park, P.: ‘H2 control of continuoustime uncertain linear systems with input quantization and matched disturbances’, Automatica, 2009, 45, (10), pp. 2435–2439.

16)

16. Azuma, S., Sugie, T.: ‘Dynamic quantization of nonlinear control systems’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 875–888.

17)

17. Tanwani, A., Prieur, C., Fiacchini, M.: ‘Observerbased feedback stabilization of linear systems with eventtriggered sampling and dynamic quantization’, Syst. Control Lett., 2016, 94, (5), pp. 46–56.

18)

18. Wang, Y.L., Yu, S.H.: ‘An improved dynamic quantization scheme for uncertain linear networked control systems’, Automatica2018, 92, (6), pp. 244–248.

19)

19. Yan, Y., Yu, S.H.: ‘Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization’, Ocean Eng., 2018, 151, (3), pp. 322–328.

20)

20. Shen, B., Tan, H., Wang, Z., et al: ‘Quantized/saturated control for sampleddata systems under noisy sampling intervals: a confluent Vandermonde matrix approach’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 4753–4759.

21)

21. Liu, Y., Lee, S.M.: ‘Stability and stabilization of TakagiSugeno fuzzy systems via sampleddata and state quantized controller’, IEEE Trans. Fuzzy Systems, 2016, 24, (3), pp. 635–644.

22)

22. Nesic, D., Teel, A.R., Carnevale, D.: ‘Explicit computation of the sampling period in emulation of controllers for nonlinear sampleddata systems’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 619–624.

23)

23. Heemels, W.P.M.H., Nesic, D., Teel, A.R., et al: ‘Stability analysis of networked and quantized linear control systems’, Nonlinear Anal., Hybrid Syst., 2013, 10, (11), pp. 111–125.

24)

24. Feng, W., Zhang, J.F.: ‘Stability analysis and stabilization control of multivariable switched stochastic systems’, Automatica, 2006, 42, (1), pp. 169–176.

25)

25. Briat, C.: ‘Stability analysis and stabilization of stochastic linear impulsive, switched and sampleddata systems under dwelltime constraints’, Automatica, 2016, 74, (74), pp. 279–287.

26)

26. Niu, Y.G., Ho, D.W.C., Wang, X.Y.: ‘Sliding mode control for it? Stochastic systems with Markovian switching’, Automatica, 2007, 43, (10), pp. 1784–1790.

27)

27. Teel, A.R., Hespanha, J.P.: ‘Stochastic hybrid system: a modeling and stability theory tutorial’. 2015 IEEE 54th Annual Conf. on Decision and Control (CDC), Osaka, Japan, 2015, pp. 3116–3136.

28)

28. Goebel, R., Sanfelice, R.G., Teel, A.R.: ‘Hybrid dynamical systems’ (Princeton University Press, Princeton, 2012).

29)

29. Cai, C., Teel, A.R.: ‘Characterization of inputtostate stability for hybrid’, Systems & Control Letters, 2009, 58, (1), pp. 47–53.

30)

30. Khalil, H.K.: ‘Nonlinear systems’ (PrenticeHall Press, Upper Saddle River, 2002).

31)

31. Heemels, W.P.M.H., Teel, A.R., Wouw, N., et al: ‘Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 1781–1796.

32)

32. Carnevale, D., Teel, A.R., Nesic, D.: ‘A ‘Lyapunov proof of an improved maximum allowable transfer interval for networked control systems’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 892–897.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2018.6180
Related content
content/journals/10.1049/ietcta.2018.6180
pub_keyword,iet_inspecKeyword,pub_concept
6
6