http://iet.metastore.ingenta.com
1887

Stability analysis of non-linear systems with multi-input signals sampled and logarithmic quantised in the framework of hybrid systems

Stability analysis of non-linear systems with multi-input signals sampled and logarithmic quantised in the framework of hybrid systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study is to estimate the bounds for the maximum allowable sampling interval (MASI) and the coarsest quantisation density (CQD) that guarantee the stability of non-linear systems with multi-input signals sampled and logarithmic quantised. First of all, hybrid feedback systems are proposed to describe the non-linear control systems. Then a sufficient condition is provided to ensure that the systems are uniformly globally exponentially stable. A crucial step is to find a novel Lyapunov function to verify the stability conditions in the sense of the hybrid framework. Meanwhile, explicit bounds for the MASI and CQD are obtained to guarantee stability. Furthermore, in the case of no quantisation or no sampling, some special stability criteria can be also obtained. Finally, some examples are given to illustrate the effectiveness of the proposed theorem.

References

    1. 1)
      • 1. Liu, C., Hao, F.: ‘Dynamic output-feedback control for linear systems by using event-triggered quantisation’, IET Control Theory Applic., 2015, 9, (8), pp. 12541263.
    2. 2)
      • 2. Chai, J., Casau, P., Sanfelice, R.G.: ‘Analysis and design of event-triggered control algorithms using hybrid systems tools’. IEEE 56th Annual Conf. and on Decision and Control (CDC), Melbourne, Australia, December 2017, pp. 60576062.
    3. 3)
      • 3. Postoyan, R., Tabuada, P., Nesic, D., et al: ‘A framework for the event-triggered stabilization of nonlinear systems’, IEEE Trans. Autom. Control, 2015, 60, (4), pp. 982996.
    4. 4)
      • 4. Fu, J., Li, T.F., Chai, T.Y., et al: ‘Sampled-data-based stabilization of switched linear neutral systems’, Automatica, 2016, 72, (10), pp. 9299.
    5. 5)
      • 5. Wakaiki, M., Yamamoto, Y.: ‘Stability analysis of sampled-data switched systems with quantization’, Automatica, 2016, 69, (7), pp. 157168.
    6. 6)
      • 6. Wakaiki, M., Yamamoto, Y.: ‘Stabilisation of switched systems with sampled and quantised output feedback’, IET Control Theory Applic., 2017, 11, (12), pp. 19131921.
    7. 7)
      • 7. Wang, X.J., Wen, C.L., Yan, J.J., et al: ‘Quantised stabilisation of continuous-time switched systems with time-delay’, IET Control Theory Applic., 2018, 12, (7), pp. 900913.
    8. 8)
      • 8. Nesic, D., Liberzon, D.: ‘A unified framework for design and analysis of networked and quantized control systems’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 732747.
    9. 9)
      • 9. Zhang, H., Gang, F., Yan, H.C., et al: ‘Sampled-data control of nonlinear networked systems with time-delay and quantization’, Int. J. Robust Nonlinear Control, 2016, 26, (5), pp. 919933.
    10. 10)
      • 10. Niu, Y.J., Dong, W., Ji, Y.D.: ‘State estimation for networked systems with a markov plant in the presence of missing and quantised measurements’, IET Control Theory Applic., 2016, 10, (5), pp. 599606.
    11. 11)
      • 11. Gao, H., Meng, X., Chen, T., et al: ‘Stabilization of networked control systems via dynamic output feedback controllers’, SIAM J. Control Optim., 2009, 48, (5), pp. 36433658.
    12. 12)
      • 12. Fu, M., Xie, L.: ‘The sector bound approach to quantized feedback control’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 16981711.
    13. 13)
      • 13. Kang, X., Ishii, H.: ‘Coarsest quantization for networked control of uncertain linear systems’, Automica, 2015, 51, (51), pp. 18.
    14. 14)
      • 14. Vu, L., Liberzon, D.: ‘Supervisory control of uncertain systems with quantized information’, Int. J. Adapt. Control Signal Process., 2012, 26, (8), pp. 739756.
    15. 15)
      • 15. Yun, S.W., Choi, Y.J., Park, P.: ‘H2 control of continuous-time uncertain linear systems with input quantization and matched disturbances’, Automatica, 2009, 45, (10), pp. 24352439.
    16. 16)
      • 16. Azuma, S., Sugie, T.: ‘Dynamic quantization of nonlinear control systems’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 875888.
    17. 17)
      • 17. Tanwani, A., Prieur, C., Fiacchini, M.: ‘Observer-based feedback stabilization of linear systems with event-triggered sampling and dynamic quantization’, Syst. Control Lett., 2016, 94, (5), pp. 4656.
    18. 18)
      • 18. Wang, Y.L., Yu, S.H.: ‘An improved dynamic quantization scheme for uncertain linear networked control systems’, Automatica2018, 92, (6), pp. 244248.
    19. 19)
      • 19. Yan, Y., Yu, S.H.: ‘Sliding mode tracking control of autonomous underwater vehicles with the effect of quantization’, Ocean Eng., 2018, 151, (3), pp. 322328.
    20. 20)
      • 20. Shen, B., Tan, H., Wang, Z., et al: ‘Quantized/saturated control for sampled-data systems under noisy sampling intervals: a confluent Vandermonde matrix approach’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 47534759.
    21. 21)
      • 21. Liu, Y., Lee, S.M.: ‘Stability and stabilization of Takagi-Sugeno fuzzy systems via sampled-data and state quantized controller’, IEEE Trans. Fuzzy Systems, 2016, 24, (3), pp. 635644.
    22. 22)
      • 22. Nesic, D., Teel, A.R., Carnevale, D.: ‘Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 619624.
    23. 23)
      • 23. Heemels, W.P.M.H., Nesic, D., Teel, A.R., et al: ‘Stability analysis of networked and quantized linear control systems’, Nonlinear Anal., Hybrid Syst., 2013, 10, (11), pp. 111125.
    24. 24)
      • 24. Feng, W., Zhang, J.F.: ‘Stability analysis and stabilization control of multi-variable switched stochastic systems’, Automatica, 2006, 42, (1), pp. 169176.
    25. 25)
      • 25. Briat, C.: ‘Stability analysis and stabilization of stochastic linear impulsive, switched and sampled-data systems under dwell-time constraints’, Automatica, 2016, 74, (74), pp. 279287.
    26. 26)
      • 26. Niu, Y.G., Ho, D.W.C., Wang, X.Y.: ‘Sliding mode control for it? Stochastic systems with Markovian switching’, Automatica, 2007, 43, (10), pp. 17841790.
    27. 27)
      • 27. Teel, A.R., Hespanha, J.P.: ‘Stochastic hybrid system: a modeling and stability theory tutorial’. 2015 IEEE 54th Annual Conf. on Decision and Control (CDC), Osaka, Japan, 2015, pp. 31163136.
    28. 28)
      • 28. Goebel, R., Sanfelice, R.G., Teel, A.R.: ‘Hybrid dynamical systems’ (Princeton University Press, Princeton, 2012).
    29. 29)
      • 29. Cai, C., Teel, A.R.: ‘Characterization of input-to-state stability for hybrid’, Systems & Control Letters, 2009, 58, (1), pp. 4753.
    30. 30)
      • 30. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall Press, Upper Saddle River, 2002).
    31. 31)
      • 31. Heemels, W.P.M.H., Teel, A.R., Wouw, N., et al: ‘Networked control systems with communication constraints: tradeoffs between transmission intervals, delays and performance’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 17811796.
    32. 32)
      • 32. Carnevale, D., Teel, A.R., Nesic, D.: ‘A ‘Lyapunov proof of an improved maximum allowable transfer interval for networked control systems’, IEEE Trans. Autom. Control, 2007, 52, (5), pp. 892897.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6180
Loading

Related content

content/journals/10.1049/iet-cta.2018.6180
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address