Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive super-twisting sliding mode control of three-phase power rectifiers in active front end applications

A robust control approach for three-phase two-level grid-connected power converters using an adaptive super-twisting algorithm (ASTA) is studied. A cascaded structure of the proposed control method is employed, which consists of two control loops, the dc-link capacitor voltage regulation loop (outer loop) and the grid phase current tracking loop (inner loop). In the outer control loop, a proportional controller using technique is considered, which is designed to regulate the dc-link capacitor voltage to some desired value. An extended state observer used to asymptotically estimate the external disturbance is integrated into the outer control loop. For the inner control loop, two ASTA-based controllers are implemented that force the grid phase currents to their desired values in finite time. Lyapunov analysis is provided to show the finite time convergence of the closed-loop system. With the help of ASTA, a priori knowledge of the upper bounds of the derivative of the disturbances is not required. Illustrative simulation results in comparison with the linear proportional–integral control method are provided to demonstrate the effectiveness and robustness of the proposed ASTA, in the presence of load variation and parametric uncertainty.

References

    1. 1)
      • 35. Gonzalez, T., Moreno, J.A., Fridman, L.: ‘Variable gain super-twisting sliding mode control’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21002105.
    2. 2)
      • 40. Doyle, J.C., Glover, K., Khargonekar, P.P., et al: ‘State-space solutions to standard H2 and h control problems’, IEEE Trans. Autom. Control, 1989, 34, (8), pp. 831847.
    3. 3)
      • 14. Oettmeier, F.M., Neely, J., Pekarek, S., et al: ‘MPC of switching in a boost converter using a hybrid state model with a sliding mode observer’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 34533466.
    4. 4)
      • 9. Harnefors, L., Yepes, A.G., Vidal, A., et al: ‘Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 702710.
    5. 5)
      • 28. Fehr, H., Gensior, A.: ‘On trajectory planning, backstepping controller design and sliding modes in active front-ends’, IEEE Trans. Power Electr., 2016, 31, (8), pp. 60446056.
    6. 6)
      • 1. Kouro, S., Leon, J.I., Vinnikov, D., et al: ‘Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology’, IEEE Ind. Electron. Mag., 2015, 9, (1), pp. 4761.
    7. 7)
      • 30. Thakar, P.S., Bandyopadhyay, B., Gandhi, P.: ‘Improved output-feedback second order sliding mode control design with implementation for underactuated slosh-container system having confined track length’, IET Control Theory Applic., 2016, 11, (8), pp. 13161323.
    8. 8)
      • 21. Zhao, Y., Wang, J., Yan, F., et al: ‘Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays’, Inf. Sci., 2019, 473, pp. 227238.
    9. 9)
      • 19. Utkin, V., Guldner, J., Shi, J.: ‘Sliding mode control in electro-mechanical systems’ (CRC Press, Tailor and Francis Group, USA, 2009, 2nd edn.).
    10. 10)
      • 12. Leyva, R., Martinez-Salamero, L., Jammes, B., et al: ‘Identification and control of power converters by means of neural networks’, IEEE Trans. Control Syst. Technol., Fundam. Theory Appl., 1997, 44, (8), pp. 735742.
    11. 11)
      • 37. Han, J.: ‘From PID to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    12. 12)
      • 34. Laghrouche, S., Liu, J., Ahmed, F.S., et al: ‘Adaptive second-order sliding mode observer-based fault reconstruction for pem fuel cell air-feed system’, IEEE Trans. Control Syst. Technol., 2015, 23, (3), pp. 10981109.
    13. 13)
      • 23. Godbole, A.A., Kolhe, J.P., Talole, S.E.: ‘Performance analysis of generalized extended state observer in tackling sinusoidal disturbances’, IEEE Trans. Control Syst. Technol., 2013, 21, (6), pp. 22122223.
    14. 14)
      • 31. Yang, Y., Hua, C., Guan, X.: ‘Finite time control design for bilateral teleoperation system with position synchronization error constrained’, IEEE Trans. Cybern., 2016, 46, (3), pp. 609619.
    15. 15)
      • 25. Kunusch, C., Puleston, P.F., Mayosky, M.A., et al: ‘Experimental results applying second order sliding mode control to a pem fuel cell based system’, Control Eng. Pract., 2013, 21, (5), pp. 719726.
    16. 16)
      • 6. Rodriguez, J., Dixon, J., Espinoza, J., et al: ‘PWM regenerative rectifiers: state of the art’, IEEE Trans. Ind. Electron., 2005, 52, (1), pp. 522.
    17. 17)
      • 11. Lee, D.-C., Lee, G.-M., Lee, K.-D.: ‘DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization’, IEEE Trans. Ind. Appl., 2000, 36, (3), pp. 826833.
    18. 18)
      • 15. Vazquez, S., Leon, J.I., Franquelo, L.G., et al: ‘Model predictive control: a review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 1631.
    19. 19)
      • 8. Linares-Flores, J., Méndez, A.H., García-Rodríguez, C., et al: ‘Robust nonlinear adaptive control of a boost converter via algebraic parameter identification’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41054114.
    20. 20)
      • 3. Vazquez, S., Lukic, S.M., Galvan, E., et al: ‘Energy storage systems for transport and grid applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 38813895.
    21. 21)
      • 20. Hung, J.Y., Gao, W., Hung, J.C.: ‘Variable structure control: a survey’, IEEE Trans. Ind. Electron., 1993, 40, (1), pp. 222.
    22. 22)
      • 22. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9–10), pp. 924941.
    23. 23)
      • 18. Liu, J., Laghrouche, S., Wack, M.: ‘Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications’, Int. J. Control, 2014, 87, (6), pp. 11171130.
    24. 24)
      • 2. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    25. 25)
      • 26. Alwi, H., Edwards, C., Stroosma, O., et al: ‘Sliding-mode propulsion-control tests on a motion flight simulator’, J. Guid. Control Dyn., 2014, 38, (4), pp. 671684.
    26. 26)
      • 10. Escobar, G., Chevreau, D., Ortega, R., et al: ‘An adaptive passivity-based controller for a unity power factor rectifier’, IEEE Trans. Control Syst. Technol., 2001, 9, (4), pp. 637644.
    27. 27)
      • 36. Kunusch, C., Puleston, P.F., Mayosky, M.A., et al: ‘Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm’, IEEE Trans. Control Syst. Technol.2009, 17, (1), pp. 167174.
    28. 28)
      • 16. Shtessel, Y., Baev, S., Biglari, H.: ‘Unity power factor control in three-phase AC/DC boost converter using sliding modes’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 38743882.
    29. 29)
      • 13. Bose, B.K.: ‘Neural network applications in power electronics and motor drives – an introduction and perspective’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 1433.
    30. 30)
      • 29. Liu, J., Vazquez, S., Wu, L., et al: ‘Extended state observer-based sliding-mode control for three-phase power converters’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 2231.
    31. 31)
      • 32. Yang, Y., Hua, C., Guan, X.: ‘Adaptive fuzzy finite-time coordination control for networked nonlinear bilateral teleoperation system’, IEEE Trans. Fuzzy Syst., 2014, 22, (3), pp. 631641.
    32. 32)
      • 24. Zheng, Q., Chen, Z., Gao, Z.: ‘A practical approach to disturbance decoupling control’, Control Eng. Pract., 2009, 17, (9), pp. 10161025.
    33. 33)
      • 38. Khalil, H.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, NJ, 2002, 3rd edn.).
    34. 34)
      • 4. Pahlevaninezhad, M., Das, P., Drobnik, J., et al: ‘A new control approach based on the differential flatness theory for an ac/dc converter used in electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20852103.
    35. 35)
      • 5. Thounthong, P.: ‘Control of a three-level boost converter based on a differential flatness approach for fuel cell vehicle applications’, IEEE Trans. Veh. Technol., 2012, 61, (3), pp. 14671472.
    36. 36)
      • 39. Xie, L., de Souza, C.E.: ‘Robust H control for linear systems with norm-bounded time-varying uncertainty’, IEEE Trans. Autom. Control, 1992, 37, (8), pp. 11881191.
    37. 37)
      • 27. Evangelista, C., Puleston, P., Valenciaga, F., et al: ‘Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 538545.
    38. 38)
      • 17. Silva, J.: ‘Sliding mode control of boost-type unity-power-factor PWM rectifiers’, IEEE Trans. Ind. Electron., 1999, 46, (3), pp. 594603.
    39. 39)
      • 7. Pan, C.-T., Chen, T.-C.: ‘Modelling and analysis of a three phase PWM AC-DC convertor without current sensor’, IEE Proc. B, Electr. Power Appl., 1993, 140, (3), pp. 201208.
    40. 40)
      • 33. Moreno, J.A., Osorio, M.: ‘A Lyapunov approach to second-order sliding mode controllers and observers’. Proc. 47th IEEE Conf. on Decision and Control, Cancun (Mexico), 2008, pp. 28562861.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6141
Loading

Related content

content/journals/10.1049/iet-cta.2018.6141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address