Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Distributed adaptive three-dimension formation control based on improved RBF neural network for non-linear multi-agent time-delay systems

Based on the improved radial basis function (RBF) neural networks, the distributed three-dimension formation control scheme in the presence of dynamic uncertainties is studied for non-linear multi-agent systems with time delay. A virtual leader which tracks the desired signal is followed by all agents adaptively. Linear reduced-order observers are designed on the basis of absolute and local state errors of each agent. The local state error and absolute state error are generated between neighbouring agents and each individual agent in formation, respectively. The time delay for each agent in the formation can be offset by designing a Lyapunov function, which can simplify the controller design. To deal with non-linear dynamic uncertainties and unavoidable disturbance, improved RBF neural networks are employed. In comparison with traditional RBF neural networks, improved RBF neural networks can provide better convergence performance. Subsequently, the formation controller is designed and the stability of the systems is validated by using a new Lyapunov function. Numerical simulation is conducted to demonstrate the effectiveness of the proposed method for non-linear multi-agent time-delay systems.

References

    1. 1)
      • 18. Charalambous, T., Ye, Y., Yang, T., et al: ‘Distributed finite-time average consensus in digraphs in the presence of time-delays’, IEEE Trans. Control Netw. Syst., 2015, 2, (4), pp. 370381.
    2. 2)
      • 30. Zou, A.M., Kumar, K.D.: ‘Neural network-based adaptive output feedback formation control for multi-agent systems’, Nonlinear Dyn., 2012, 70, (2), pp. 12831296.
    3. 3)
      • 20. Ren, W.: ‘Consensus strategies for cooperative control of vehicle formations’, IET Control Theory Applic., 2007, 1, (2), pp. 505512.
    4. 4)
      • 8. Richert, D., Cortés, J.: ‘Optimal leader allocation in UAV formation pairs ensuring cooperation’, Automatica, 2013, 49, (11), pp. 31893198.
    5. 5)
      • 27. Zuo, Z., Zhang, J., Wang, Y.: ‘Adaptive fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 39233931.
    6. 6)
      • 2. Wang, Y., Cheng, L., Hou, Z.-G., et al: ‘Optimal formation of multirobot systems based on recurrent neural network’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (2), pp. 322333.
    7. 7)
      • 7. Dong, X., Yu, B., Shi, Z., et al: ‘Time-varying formation control for unmanned aerial vehicles: theories and applications’, IEEE Trans. Control Syst. Technol., 2015, 23, (1), pp. 340348.
    8. 8)
      • 26. Zou, A.M., de Ruiter, A.H.J., Kumar, K.D.: ‘Distributed finite-time velocity-free attitude coordination control for spacecraft formations’, Automatica, 2016, 67, pp. 4653.
    9. 9)
      • 19. Ou, L., Zou, C., Yu, X.: ‘Decentralized minimal-time planar formation control of multi-agent system’, Int. J. Robust Nonlinear Control, 2017, 27, (14), pp. 14801498.
    10. 10)
      • 24. Xu, G., Zhao, D., Liao, P., et al: ‘Optimal control of UAV elastic formation based on Legendre pseudospectral method’. Chinese Control and Decision Conf., Yinchuan, China, 2016.
    11. 11)
      • 9. Meng, D., Jia, Y., Du, J., et al: ‘On iterative learning algorithms for the formation control of nonlinear multi-agent systems’, Automatica, 2014, 50, (1), pp. 291295.
    12. 12)
      • 34. Khan, S., Naseem, I., Togneri, R., et al: ‘A novel adaptive kernel for the RBF neural networks’, Circuits Syst. Signal Process., 2017, 36, (4), pp. 16391653.
    13. 13)
      • 16. Oh, K.K., Park, M.C., Ahn, H.S.: ‘A survey of multi-agent formation control’, Automatica, 2015, 53, pp. 424440.
    14. 14)
      • 22. Chen, J., Sun, D., Yang, J., et al: ‘Leader–follower formation control of multiple non-holonomic mobile robots incorporating a receding-horizon scheme’, Int. J. Robot. Res., 2010, 29, (6), pp. 727747.
    15. 15)
      • 3. Wu, Z., Xu, Y., Lu, R., et al: ‘Event-triggered control for consensus of multi-agent systems with fixed/switching topologies’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (10), pp. 17361746.
    16. 16)
      • 25. Song, Q., Cao, J., Yu, W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pining control’, Syst. Control Lett., 2010, 59, (9), pp. 553562.
    17. 17)
      • 23. El-Hawwary, M.I.: ‘Three-dimensional circular formations via set stabilization’, Automatica, 2015, 54, pp. 374381.
    18. 18)
      • 13. Turpin, M., Michael, N., Kumar, V.: ‘Decentralized formation control with variable shapes for aerial robots’. Proc. IEEE Int. Conf. on Robotics and Automation, Saint Paul, USA, 2012, pp. 2330.
    19. 19)
      • 6. Li, W.: ‘Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints’, IEEE Trans. Cybern., 2016, 46, (5), pp. 12421248.
    20. 20)
      • 32. González, A., Aranda, M., López-Nicolás, G., et al: ‘Time delay compensation based on smith predictor in multiagent formation control’, IFAC-PapersOnline, 2017, 50, (1), pp. 1164511651.
    21. 21)
      • 11. Russell Carpenter, J.: ‘Decentralized control of satellite formations’, Int. J. Robust Nonlinear Control, 2002, 12, pp. 141161.
    22. 22)
      • 10. Deghat, M., Anderson, B., Lin, Z.: ‘Combined flocking and distance-based shape control of multi-agent formations’, IEEE Trans. Autom. Control, 2016, 61, (7), pp. 18241837.
    23. 23)
      • 14. Cepeda-Gomez, R., Perico, L.F.: ‘Formation control of nonholonomic vehicles under time delayed communications’, IEEE Trans. Autom. Sci. Eng., 2015, 12, (3), pp. 819826.
    24. 24)
      • 1. Aranda, M.M., López-Nicolás, G., Sagüés, C., et al: ‘Coordinate-free formation stabilization based on relative position measurements’, Automatica, 2015, 57, pp. 1120.
    25. 25)
      • 5. Chen, X., Jia, Y.: ‘Adaptive leader–follower formation control of nonholonomic mobile robots using active vision’, IET Control Theory Applic., 2015, 9, (8), pp. 13021311.
    26. 26)
      • 4. Wu, Z., Xu, Y., Pan, Y., et al: ‘Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurement and external disturbance’, IEEE Trans. Circuit Syst., 2018, 65, (7), pp. 22322242.
    27. 27)
      • 28. Wang, F.Y., Jin, N., Liu, D., et al: ‘Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ɛ-error bound’, IEEE Trans. Neural Netw. Learn. Syst., 2011, 22, (1), pp. 2436.
    28. 28)
      • 31. Khoo, S., Yin, J., Wang, B., et al: ‘Adaptive data based neural network leader–follower control of multi-agent networks’. IECON 2011–37th Annual Conf. of the IEEE Industrial Electronics Society, Melbourne, Australia, 2011.
    29. 29)
      • 17. Yu, X., Yang, F., Ou, L., et al: ‘Two-degree-of-freedom optimal consensus scheme of fractional-order multi-agent systems’, IET Control Theory Applic., 2018, 12, (16), pp. 21752183.
    30. 30)
      • 33. Chen, C.L., Wen, G., Liu, Y., et al: ‘Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (6), pp. 12171226.
    31. 31)
      • 15. Millan, P., Orihuela, L., Jurado, I., et al: ‘Formation control of autonomous underwater vehicles subject to communication delays’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 770777.
    32. 32)
      • 21. Su, H., Wang, X., Lin, Z.: ‘Flocking of multi-agents with a virtual leader’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 293307.
    33. 33)
      • 12. Abdessameud, A., Tayebi, A.: ‘Formation control of VTOL unmanned aerial vehicles with communication delays’, Automatica, 2011, 47, (11), pp. 23832394.
    34. 34)
      • 29. Wang, F.Y., Zhang, H.G., Liu, D.R.: ‘Adaptive dynamic programming: an introduction’, IEEE Comput. Intell. Mag., 2009, 4, (2), pp. 3947.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6130
Loading

Related content

content/journals/10.1049/iet-cta.2018.6130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address