Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust filter design for asymmetric measurement noise using variational Bayesian inference

To obtain an effective state estimator for industrial processes, estimator needs to be designed to match the characteristics of noise. In this study, a new filter is proposed focusing on asymmetric measurement noise with probable outliers. By learning a time-varying skew t distribution using the variational Bayesian technique, the authors' method can estimate the system state and update the noise statistics simultaneously. A numerical simulation, as well as an experiment on the hybrid tank system, is conducted to demonstrate the performance. It shows that the proposed filter is superior to the existing solutions, especially when the statistics of measurements noise are unknown.

References

    1. 1)
      • 7. Liu, S., Song, Y., Wei, G.: ‘RMPC-based security problem for polytopic uncertain system subject to deception attacks and persistent disturbances’, IET Control Theory Appl., 2017, 11, (10), pp. 16111618.
    2. 2)
      • 20. Piché, R., Särkkä, S., Hartikainen, J.: ‘Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate Student-t distribution’. Int. Workshop on Machine Learning for Signal Processing (MLSP), Santander, Spain, 2012, pp. 16.
    3. 3)
      • 33. Lee, S.X., McLachlan, G.J.: ‘Finite mixtures of canonical fundamental skew t-distributions’, Stat. Comput., 2016, 26, (3), pp. 573589.
    4. 4)
      • 27. Särkkä, S., Nummenmaa, A.: ‘Recursive noise adaptive Kalman filtering by variational Bayesian approximations’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 596600.
    5. 5)
      • 40. Huang, Y., Zhang, Y., Li, N.: ‘Robust Student's t based nonlinear filter and smoother’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (5), pp. 25862596.
    6. 6)
      • 15. Nosrati, K., Shafiee, M.: ‘Kalman filtering for discrete-time linear fractional-order singular systems’, IET Control Theory Appl., 2018, 12, (9), pp. 12541266.
    7. 7)
      • 14. Yang, C., Gao, Z., Liu, F.: ‘Kalman filters for linear continuous-time fractional-order systems involving coloured noises using fractional-order average derivative’, IET Control Theory Appl., 2018, 12, (4), pp. 456465.
    8. 8)
      • 3. Zhao, S., Huang, B., Shmaliy, Y.S.: ‘Bayesian state estimation on finite horizons: the case of linear state-space model’, Automatica, 2017, 85, pp. 9199.
    9. 9)
      • 36. Barr, D.R., Sherrill, E.T.: ‘Mean and variance of truncated normal distributions’, Am. Stat., 1999, 53, (4), pp. 357361.
    10. 10)
      • 38. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘On the iterative computation of error matrix in unbiased FIR filtering’, IEEE Signal Process. Lett., 2017, 24, (5), pp. 555558.
    11. 11)
      • 25. Nurminen, H., Ardeshiri, T., Piché, R.: ‘Robust inference for state-space models with skewed measurement noise’, IEEE Signal Process. Lett., 2015, 22, (11), pp. 18981902.
    12. 12)
      • 6. Hu, J., Wang, Z., Chen, D.: ‘Estimation, filtering and fusion for networked systems with network-induced phenomena: new progress and prospects’, Inf. Fusion, 2016, 31, pp. 6575.
    13. 13)
      • 17. Xu, C., Zhao, S., Huang, B., et al: ‘Distributed Student's t filtering algorithm for heavy-tailed noises’, Int. J. Adapt. Control Signal Process., 2018, 32, (6), pp. 875890.
    14. 14)
      • 37. Vaidehi, V., Krishnan, C.N.: ‘Computational complexity of the Kalman tracking algorithm’, IETE J. Res., 1998, 44, (3), pp. 125134.
    15. 15)
      • 5. Zhao, S., Liu, F.: ‘State estimation in non-linear Markov jump systems with uncertain switching probabilities’, IET Control Theory Appl., 2012, 6, (5), pp. 641650.
    16. 16)
      • 35. Ma, Y., Huang, B.: ‘Bayesian learning for dynamic feature extraction with application in soft sensing’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 71717180.
    17. 17)
      • 24. Kim, H.M., Ryu, D., Mallick, B.K., et al: ‘Mixtures of skewed Kalman filters’, J. Multivariate Anal., 2014, 123, pp. 228251.
    18. 18)
      • 10. Hu, J., Wang, Z., Gao, H.: ‘Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations’, Automatica, 2018, 97, pp. 150160.
    19. 19)
      • 26. Farrington, B.R., Wells, C.V.: ‘A thorough approach to measurement uncertainty analysis applied to immersed heat exchanger testing’. ASME Solar Energy Division Conf., Anaheim, USA, April 1986, pp. 1417.
    20. 20)
      • 8. Anderson, B.D.O., Moore, J.B.: ‘Optimal filtering’ (Prentice-Hall, Englewood Cliffs, NJ, 1979).
    21. 21)
      • 32. Gupta, A.K.: ‘Multivariate skew t-distribution’, Statistics, 2003, 37, (4), pp. 359363.
    22. 22)
      • 2. Zhang, X., Ding, F., Xu, L.: ‘State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle’, IET Control Theory Appl., 2018, 12, (12), pp. 17041713.
    23. 23)
      • 19. Roth, M., Ozkan, E., Gustafsson, F.: ‘A Student's filter for heavy-tailed process and measurement noise’. 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 57705774.
    24. 24)
      • 12. Liu, S., Wei, G., Song, Y.: ‘Extended Kalman filtering for stochastic nonlinear systems with randomly occurring cyber attacks’, Neurocomputing, 2016, 207, pp. 708716.
    25. 25)
      • 30. Azzalini, A.: ‘A class of distributions which includes the normal ones’, Scand. J. Stat., 1985, 12, (2), pp. 171178.
    26. 26)
      • 21. Fernandez, C., Steel, F.J.: ‘On Bayesian modeling of fat tails and skewness’, J. Am. Stat. Assoc., 1998, 93, (441), pp. 359371.
    27. 27)
      • 16. Sun, Y.H., Wu, X.P., Cao, J.D.: ‘Fractional extended Kalman filtering for non-linear fractional system with Levy noises’, IET Control Theory Appl., 2017, 11, (3), pp. 349358.
    28. 28)
      • 34. Agamennoni, G., Nieto, J.I., Nebot, E.M.: ‘Approximate inference in state-space models with heavy-tailed noise’, IEEE Trans. Signal Process., 2012, 60, (10), pp. 50245037.
    29. 29)
      • 23. Naveau, P., Genton, M.G., Shen, X.: ‘A skewed Kalman filter’, J. Multivariate Anal., 2005, 94, (2), pp. 382400.
    30. 30)
      • 28. Huang, Y., Zhang, Y., Wu, Z.: ‘A novel robust Student's t based Kalman filter’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (3), pp. 15451554.
    31. 31)
      • 22. Lee, S.X., Mclachlan, G.J.: ‘On mixtures of skew normal and skew t-distributions’, Adv. Data Anal. Classif., 2013, 7, (3), pp. 241266.
    32. 32)
      • 31. Sahu, S.K., Dipak, K.: ‘A new class of multivariate skew distributions with applications to Bayesian regression models’, Can. J Stat., 2003, 31, (2), pp. 129150.
    33. 33)
      • 1. Simon, D.: ‘Kalman filtering with state constraints: a survey of linear and nonlinear algorithms’, IET Control Theory Appl., 2010, 4, (8), pp. 13031318.
    34. 34)
      • 11. Hu, J., Wang, Z., Liu, S.: ‘A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements’, Automatica, 2016, 64, pp. 155162.
    35. 35)
      • 29. Anderson, B.D.O., Moore, J.B.: ‘Detectability and stabilizability of time-varying discrete-time linear systems’, SIAM J. Control Optim., 1981, 19, (1), pp. 2032.
    36. 36)
      • 9. Simon, D.: ‘Optimal state estimation: Kalman, H, and nonlinear approaches’ (John Wiley and Sons, New York, 2006).
    37. 37)
      • 18. Sorenson, H., Alspach, D.: ‘Recursive Bayesian estimation using Gaussian sums’, Automatica, 1971, 7, (4), pp. 465479.
    38. 38)
      • 13. Liu, Q., Wang, Z., He, X.: ‘On Kalman-consensus filtering with random link failures over sensor networks’, IEEE Trans. Autom. Control, 2018, 63, (8), pp. 27012708.
    39. 39)
      • 4. Mao, Y., Ding, F., Liu, Y.: ‘Parameter estimation algorithms for Hammerstein time-delay systems based on the orthogonal matching pursuit scheme’, IET Signal Process., 2016, 11, (3), pp. 265274.
    40. 40)
      • 39. Fatehi, A., Huang, B.: ‘Kalman filtering approach to multi-rate information fusion in the presence of irregular sampling rate and variable measurement delay’, J. Process. Control, 2017, 53, pp. 1525.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6016
Loading

Related content

content/journals/10.1049/iet-cta.2018.6016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address