Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-fragile control design and state estimation for vehicle dynamics subject to input delay and actuator faults

In this study, the authors precisely concentrate on the issue of state estimator-based non-fragile reliable control design of the vehicle dynamics in critical situations via the extended dissipative theory. In particular, the vehicle dynamics for rollover mitigation with input time delay and the state estimator are represented by the Takagi–Sugeno (T-S) fuzzy model. Moreover, by constructing a suitable Lyapunov–Krasovskii functional, sufficient conditions for asymptotic stability and extended dissipativity of the proposed T-S fuzzy control system are formulated in terms of linear matrix inequalities (LMIs) such that the estimated state values are exactly synchronised with the actual state values of the considered vehicle model. Also, a non-fragile reliable control design method is then presented via the formulated LMI-based conditions, which can satisfactorily prevent the vehicle rollover in critical situations. Finally, the proposed theoretical results are verified through simulations wherein the significance and importance of the designed non-fragile controller are clearly illustrated.

References

    1. 1)
      • 22. Cai, X., Liao, L., Liu, Y., et al: ‘Predictor-based stabilisation for discrete nonlinear systems with state-dependent input delays’, Int. J. Syst. Sci., 2017, 48, (4), pp. 769777.
    2. 2)
      • 6. Aouaouda, S., Chadli, M., Karimi, H.R.: ‘Robust static output-feedback controller design against sensor failure for vehicle dynamics’, IET Control Theory Appl., 2014, 8, (9), pp. 728737.
    3. 3)
      • 7. Yao, Z., Wang, G., Li, X., et al: ‘Dynamic simulation for the rollover stability performances of articulated vehicles’, Proc. Inst. Mech. Eng. D, J. Automob. Eng., 2014, 228, (7), pp. 771783.
    4. 4)
      • 18. Sakthivel, R., Sathishkumar, M., Ren, Y., et al: ‘Fault-tolerant sampled-data control of singular networked cascade control systems’, Int. J. Syst. Sci., 2017, 48, (10), pp. 20792090.
    5. 5)
      • 25. Zeng, H.B., Park, Ju.H., Xiao, S.P., et al: ‘Further results on sampled-data control for master-slave synchronization of chaotic Lur'e systems with time delay’, Nonlinear Dyn., 2015, 82, (1-2), pp. 851863.
    6. 6)
      • 16. Dahmani, H., Chadli, M., Rabhi, A., et al: ‘Road curvature estimation for vehicle lane departure detection using a robust Takagi-Sugeno fuzzy observer’, Veh. Syst. Dyn., 2013, 51, (5), pp. 581599.
    7. 7)
      • 12. Sakthivel, R., Kaviarasan, B., Ma, Y.K., et al: ‘Sampled-data reliable stabilization of T-S fuzzy systems and its application’, Complexity, 2016, 21, (S2), pp. 518529.
    8. 8)
      • 27. Zhou, J., Park, Ju.H., Kong, Q.: ‘Robust resilient L2L control for uncertain stochastic systems with multiple time delays via dynamic output feedback’, J. Franklin Inst., 2016, 353, (13), pp. 30783103.
    9. 9)
      • 3. Wang, R., Hu, C., Yan, F., et al: ‘Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20632074.
    10. 10)
      • 34. Lee, T.H., Park, M.J., Park, Ju.H., et al: ‘Extended dissipative analysis for neural networks with time-varying delays’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 19361941.
    11. 11)
      • 10. Dahmani, H., Pages, O., Hajjaji, A., et al: ‘Observer-based robust control of vehicle dynamics for rollover mitigation in critical situations’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 274284.
    12. 12)
      • 20. Wong, W.K., Tian, E., Yue, D., et al: ‘Robust reliable control for systems with random actuator fault and probabilistic nonlinearity with new characters’, Int. J. Robust Nonlinear Control, 2013, 23, (18), pp. 20132027.
    13. 13)
      • 14. Wang, L., Lam, H.-K.: ‘New stability criterion for continuous-time Takagi–Sugeno fuzzy systems with time-varying delay’, IEEE Trans. Cybern., 2019, 49, (4), pp. 15511556.
    14. 14)
      • 31. Hu, X., Wu, L., Hu, C., et al: ‘Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach’, Int. J. Syst. Sci., 2014, 45, (8), pp. 17401756.
    15. 15)
      • 2. Dahmani, H., Chadli, M., Rabhi, A., et al: ‘Vehicle dynamics and road curvature estimation for lane departure warning system using robust fuzzy observers: experimental validation’, Veh. Syst. Dyn., 2015, 53, (8), pp. 11351149.
    16. 16)
      • 37. Li, X., Zhu, F., Chakrabarty, A., et al: ‘Nonfragile fault-tolerant fuzzy observer-based controller design for nonlinear systems’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 16791689.
    17. 17)
      • 32. Shen, H., Park, Ju.H., Zhang, L., et al: ‘Robust extended dissipative control for sampled-data Markov jump systems’, Int. J. Control, 2014, 87, (8), pp. 15491564.
    18. 18)
      • 21. Chadli, M., Davoodi, M., Meskin, N.: ‘Distributed state estimation, fault detection and isolation filter design for heterogeneous multi-agent linear parameter-varying systems’, IET Control Theory Appl., 2016, 11, (2), pp. 254262.
    19. 19)
      • 19. Sakthivel, R., Selvaraj, P., Lim, Y., et al: ‘Adaptive reliable output tracking of networked control systems against actuator faults’, J. Franklin Inst., 2017, 354, (9), pp. 38133837.
    20. 20)
      • 8. Li, L., Lu, Y., Wang, R., et al: ‘A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 33893401.
    21. 21)
      • 13. Wang, L., Lam, H.-K.: ‘A new approach to stability and stabilization analysis for continuous-time Takagi-Sugeno fuzzy systems with time delay’, IEEE Trans. Fuzzy Syst., 2018, 26, (4), pp. 24602465.
    22. 22)
      • 9. Dahmani, H., Pages, O., Hajjaji, A., et al: ‘Observer-based state feedback control for vehicle chassis stability in critical situations’, IEEE Trans. Control Syst. Technol., 2016, 24, (2), pp. 636643.
    23. 23)
      • 33. Shen, H., Zhu, Y., Zhang, L., et al: ‘Extended dissipative state estimation for Markov jump neural networks with unreliable links’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (2), pp. 346358.
    24. 24)
      • 15. Aouaouda, S., Bouarar, T., Bouhali, O.: ‘Fault tolerant tracking control using unmeasurable premise variables for vehicle dynamics subject to time varying faults’, J. Franklin Inst., 2014, 351, (9), pp. 45144537.
    25. 25)
      • 28. Sakthivel, R., Aravindh, D., Selvaraj, P., et al: ‘Vibration control of structural systems via robust non-fragile sampled-data control scheme’, J. Franklin Inst., 2017, 354, (3), pp. 12651284.
    26. 26)
      • 24. Lei, F., Xu, X., Li, T., et al: ‘Attitude tracking control for Mars entry vehicle via TS model with time-varying input delay’, Nonlinear Dyn., 2016, 85, (3), pp. 17491764.
    27. 27)
      • 17. Liu, Y., Niu, Y., Zou, Y., et al: ‘Adaptive sliding mode reliable control for switched systems with actuator degradation’, IET Control Theory Appl., 2015, 9, (8), pp. 11971204.
    28. 28)
      • 5. Aouaouda, S., Chadli, M., Boukhnifer, M., et al: ‘Robust fault tolerant tracking controller design for vehicle dynamics: a descriptor approach’, Mechatronics, 2015, 30, pp. 316326.
    29. 29)
      • 29. Huang, S.J., Yang, G.H.: ‘Non-fragile H dynamic output feedback control for uncertain Takagi–Sugeno fuzzy systems with time-varying delay’, Int. J. Syst. Sci., 2016, 47, (12), pp. 29542964.
    30. 30)
      • 30. He, S., Xu, H.: ‘Non-fragile finite-time filter design for time-delayed Markovian jumping systems via T-S fuzzy model approach’, Nonlinear Dyn., 2015, 80, (3), pp. 11591171.
    31. 31)
      • 11. Chadli, M., Karimi, H.R., Shi, P.: ‘On stability and stabilization of singular uncertain takagi-sugeno fuzzy systems’, J. Franklin Inst., 2014, 351, (3), pp. 14531463.
    32. 32)
      • 23. Ma, Y., Jin, S., Gu, N.: ‘Delay-dependent decentralised control for a class of uncertain similar interconnected systems with state delay and input delay’, Int. J. Syst. Sci., 2015, 46, (16), pp. 28872896.
    33. 33)
      • 36. Zhou, J., Park, Ju.H., Ma, Q.: ‘Non-fragile observer-based H control for stochastic time-delay systems’, Appl. Math. Comput., 2016, 291, pp. 6983.
    34. 34)
      • 26. Wu, Z.G., Park, Ju.H., Su, H., et al: ‘Non-fragile synchronisation control for complex networks with missing data’, Int. J. Control, 2013, 86, (3), pp. 555566.
    35. 35)
      • 35. Wei, H., Li, R., Chen, C., et al: ‘Extended dissipative analysis for memristive neural networks with two additive time-varying delay components’, Neurocomputing, 2016, 216, pp. 429438.
    36. 36)
      • 4. Karimi, H.R., Chadli, M., Shi, P.: ‘Fault detection, isolation, and tolerant control of vehicles using soft computing methods’, IET Control Theory Appl., 2014, 8, (9), pp. 655657.
    37. 37)
      • 1. Huang, X., Zhang, H., Zhang, G., et al: ‘Robust weighted gain-scheduling H vehicle lateral motion control with considerations of steering system backlash-type hysteresis’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 17401753.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5967
Loading

Related content

content/journals/10.1049/iet-cta.2018.5967
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address