http://iet.metastore.ingenta.com
1887

Algebraic criteria for reachable set estimation of delayed memristive neural networks

Algebraic criteria for reachable set estimation of delayed memristive neural networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study aims at investigating the reachable set estimation for delayed memristive neural networks (MNNs) with bounded disturbances. Under the framework of Filippov's solution and differential inclusion theory, a reachable set estimation criterion is established by means of Lyapunov functional. The obtained condition guarantees that all the states of MNNs are bounded. Moreover, a delay-dependent feedback controller design problem for MNNs is also considered. The exponential stability and stabilisability conditions are obtained. Two numerical examples are presented to demonstrate the usefulness of the proposed results.

References

    1. 1)
      • 1. Chua, L.: ‘Memristor-the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    2. 2)
      • 2. Wen, S.P., Zeng, Z.G., Huang, T.W., et al: ‘Lag synchronization of switched neural networks via neural activation function and applications in image encryption’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (7), pp. 14931502.
    3. 3)
      • 3. Guo, Z.Y., Wang, J., Yan, Z.: ‘Attractivity analysis of memristor-based cellular neural networks with time-varying delays’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (4), pp. 704717.
    4. 4)
      • 4. Zhang, R., Zeng, D., Zhong, S., et al: ‘Sampled-data synchronisation for memristive neural networks with multiple time-varying delays via extended convex combination method’, IET Control Theory Applic., 2018, 12, (7), pp. 922932.
    5. 5)
      • 5. Sheng, Y., Zhang, H., Zeng, Z.: ‘Stabilization of fuzzy memristive neural networks with mixed time delays’, IEEE Trans. Fuzzy Syst., 2018, 26, (5), pp. 25912606.
    6. 6)
      • 6. Wang, H., Duan, S., Li, C., et al: ‘Exponential stability analysis of delayed memristor-based recurrent neural networks with impulse effects’, Neural Comput. Applic., 2017, 28, (4), pp. 669678.
    7. 7)
      • 7. Wang, L., Yi, S., Zhang, G.: ‘Finite-time stabilization and adaptive control of memristor-based delayed neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (11), pp. 26482659.
    8. 8)
      • 8. Abdurahman, A., Jiang, H., Teng, Z.: ‘Finite-time synchronization for memristor-based neural networks with time-varying delays’, Neural Netw., 2015, 69, (3-4), pp. 2028.
    9. 9)
      • 9. Zhang, G., Zeng, Z.: ‘Exponential stability for a class of memristive neural networks with mixed time-varying delays’, Appl. Math. Comput., 2018, 321, pp. 544554.
    10. 10)
      • 10. Wen, S., Huang, T., Zeng, Z., et al: ‘Circuit design and exponential stabilization of memristive neural networks’, Neural Netw., 2015, 63, pp. 4856.
    11. 11)
      • 11. Zhang, G., Shen, Y.: ‘Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (7), pp. 14311441.
    12. 12)
      • 12. Feng, Y., Yang, X., Song, Q., et al: ‘Synchronization of memristive neural networks with mixed delays via quantized intermittent control’, Appl. Math. Comput., 2018, 339, pp. 874887.
    13. 13)
      • 13. Zhang, W., Li, C., Huang, T., et al: ‘Stability and synchronization of memristor-based coupling neural networks with time-varying delays via intermittent control’, Neurocomputing, 2016, 173, pp. 10661072.
    14. 14)
      • 14. Rakkiyappan, R., Chandrasekar, A., Cao, J.: ‘Passivity and passification of memristor-based recurrent neural networks with additive time-varying delays’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (9), pp. 20432057.
    15. 15)
      • 15. Zhang, G., Zeng, Z., Hu, J.: ‘New results on global exponential dissipativity analysis of memristive inertial neural networks with distributed time-varying delays’, Neural Netw., 2018, 97, pp. 183191.
    16. 16)
      • 16. Ali, M.S., Saravanakumar, R., Cao, J.: ‘New passivity criteria for memristor-based neutral-type stochastic bam neural networks with mixed time-varying delays’, Neurocomputing, 2016, 171, pp. 15331547.
    17. 17)
      • 17. Ding, S., Wang, Z., Zhang, H.: ‘Dissipativity analysis for stochastic memristive neural networks with time-varying delays: a discrete-time case’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (3), pp. 618630.
    18. 18)
      • 18. Bao, H., Cao, J., Kurths, J., et al: ‘H state estimation of stochastic memristor-based neural networks with time-varying delays’, Neural Netw., 2018, 99, (3), pp. 7991.
    19. 19)
      • 19. Abedor, J., Nagpal, K., Poolla, K.: ‘A linear matrix inequality approach to peak-to-peak gain minimization’, Int. J. Robust Nonlinear Control, 1996, 6, (9-10), pp. 899927.
    20. 20)
      • 20. Hu, T., Teel, A.R., Zaccarian, L.: ‘Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions’, IEEE Trans. Autom. Control, 2006, 51, (11), pp. 17701786.
    21. 21)
      • 21. Hoefkens, J., Berz, M., Makino, K.: ‘Computing validated solutions of implicit differential equations’, Adv. Comput. Math., 2003, 19, (1-3), pp. 231253.
    22. 22)
      • 22. Fridman, E., Shaked, U.: ‘On reachable sets for linear systems with delay and bounded peak inputs’, Automatica, 2003, 39, pp. 20052010.
    23. 23)
      • 23. Kim, J.H.: ‘Improved ellipsoidal bound of reachable sets for time-delayed linear systems with disturbances’, Automatica, 2008, 44, pp. 29402943.
    24. 24)
      • 24. Zuo, Z., Ho, D.W.C., Wang, Y.: ‘Reachable set bounding for delayed systems with polytopic uncertainties: the maximal Lyapunov–Krasovskii functional approach’, Automatica, 2010, 46, (5), pp. 949952.
    25. 25)
      • 25. Nam, P.T., Pathirana, P.N.: ‘Further result on reachable set bounding for linear uncertain polytopic systems with interval time-varying delays’, Automatica, 2011, 47, pp. 18381841.
    26. 26)
      • 26. Zuo, Z., Fu, Y., Wang, Y.: ‘Results on reachable set estimation for linear systems with both discrete and distributed delays’, IET Control Theory Applic., 2012, 6, (14), pp. 23462350.
    27. 27)
      • 27. Lam, J., Zhang, B., Chen, Y., et al: ‘Reachable set estimation for discrete-time linear systems with time delays’, Int. J. Robust Nonlinear Control, 2015, 25, (2), pp. 269281.
    28. 28)
      • 28. Zuo, Z.Q., Wang, Z.Q., Chen, Y.P., et al: ‘A non-ellipsoidal reachable set estimation for uncertain neural networks with time-varying delay’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, pp. 10971106.
    29. 29)
      • 29. Feng, Z., Lam, J.: ‘On reachable set estimation of singular systems’, Automatica, 2015, 52, pp. 146153.
    30. 30)
      • 30. Liu, G., Xu, S., Wei, Y., et al: ‘New insight into reachable set estimation for uncertain singular time-delay systems’, Appl. Math. Comput., 2018, 320, pp. 769780.
    31. 31)
      • 31. Fei, Z., Guan, C., Shi, P.: ‘Reachable set estimation for discrete-time switched system with application to time-delay system’, Int. J. Robust Nonlinear Control, 2018, 28, (6), pp. 24682483.
    32. 32)
      • 32. Baldi, S., Xiang, W.: ‘Reachable set estimation for switched linear systems with dwell-time switching’, Nonlinear Anal. Hybrid Syst., 2018, 29, pp. 2033.
    33. 33)
      • 33. Chen, Y., Lam, J., Zhang, B.: ‘Estimation and synthesis of reachable set for switched linear systems’, Automatica, 2016, 63, pp. 122132.
    34. 34)
      • 34. Tian, D., Liu, S., Sun, Y.S., et al: ‘Reachable set estimation for switched positive systems with mixed time-varying delays and bounded disturbances’, IET Control Theory Applic., 2018, 12, (15), pp. 20032009.
    35. 35)
      • 35. Feng, Z., Zheng, W.X., Wu, L.: ‘Reachable set estimation of T–S fuzzy systems with time-varying delay’, IEEE Trans. Fuzzy Syst., 2017, 25, (4), pp. 878891.
    36. 36)
      • 36. Feng, Z., Zheng, W.X.: ‘On reachable set estimation of delay Markovian jump systems with partially known transition probabilities’, J. Franklin Inst., 2016, 353, (15), pp. 38353856.
    37. 37)
      • 37. Du, B., Lam, J., Shu, Z., et al: ‘On reachable sets for positive linear systems under constrained exogenous inputs’, Automatica, 2016, 74, pp. 230237.
    38. 38)
      • 38. Zhao, J.: ‘Reachable set estimation for a class of memristor-based neural networks with time-varying delays’, IEEE Access, 2018, 6, pp. 937943.
    39. 39)
      • 39. Filippov, A.F.: ‘Differential equations with discontinuous right-hand side’, Matematicheskii Sb., 1960, 93, (1), pp. 99128.
    40. 40)
      • 40. Boyd, L.F.S., Ghaoui, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, PA, Philadelphia, 1994).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5959
Loading

Related content

content/journals/10.1049/iet-cta.2018.5959
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address