http://iet.metastore.ingenta.com
1887

Input-delay compensation in a robust adaptive control framework

Input-delay compensation in a robust adaptive control framework

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A modification to the control framework for uncertain systems with actuator delays is presented. Specifically, a time delay is introduced in the control input of the state predictor to compensate for the destabilising effect of an input delay in the plant. For this modified framework, the analysis shows that the output of the adaptive system closely follows the behaviour of a suitably defined, non-adaptive, stable reference system provided that a delay-dependent stability condition is satisfied and the adaptive gain is chosen sufficiently large. The set of combinations of input delay and compensation delay for which the stability condition is satisfied contains an open set of pairs of positive values provided that a filter bandwidth is chosen sufficiently large. The efficacy of the delay compensation is illustrated by a simple example. A numerical continuation is also performed to explore the stability region for a case where this can be approximated a priori.

References

    1. 1)
      • 1. Krstic, M.: ‘Systems and control: foundations and applications, delay compensation for nonlinear, adaptive, and PDE systems’ (Springer, Cambridge, 2009).
    2. 2)
      • 2. Smith, O.J.M.: ‘Closer control of loops with dead time’, Chem. Eng. Prog., 1957, 53, (5), pp. 217219.
    3. 3)
      • 3. Kwon, W., Pearson, A.: ‘Feedback stabilization of linear systems with delayed control’, IEEE Trans. Autom. Control, 1980, 25, (2), pp. 266269.
    4. 4)
      • 4. Artstein, Z.: ‘Linear systems with delayed controls: a reduction’, IEEE Trans. Autom. Control, 1982, 27, (4), pp. 869879.
    5. 5)
      • 5. Richard, J.P.: ‘Time-delay systems: an overview of some recent advances and open problems’, Automatica, 2003, 39, (10), pp. 16671694.
    6. 6)
      • 6. Niculescu, S.I., Gu, K.: ‘Advances in time-delay systems’ (Springer-Verlag, Berlin, 2004).
    7. 7)
      • 7. Hovakimyan, N., Cao, C.: ‘1adaptive control theory: guaranteed robustness with fast adaptation’ (SIAM, Philadelphia, 2010).
    8. 8)
      • 8. Cao, C., Hovakimyan, N.: ‘Design and analysis of a novel ℒ1 adaptive control architecture with guaranteed transient performance’, IEEE Trans. Autom. Control, 2008, 53, (2), pp. 586591.
    9. 9)
      • 9. Lee, H., Snyder, S., Hovakimyan, N.: ‘1 adaptive output feedback augmentation for missile systems’, IEEE Trans. Aerosp. Electron. Syst., 2018, 54, (2), pp. 680692.
    10. 10)
      • 10. Choe, R., Xargay, E., Hovakimyan, N.: ‘1 adaptive control for a class of uncertain nonaffine-in-control nonlinear systems’, IEEE Trans. Autom. Control, 2016, 61, (3), pp. 840846.
    11. 11)
      • 11. Nguyen, K.D., Dankowicz, H.: ‘Adaptive control of underactuated robots with unmodeled dynamics’, Robot. Auton. Syst., 2015, 64, pp. 8499.
    12. 12)
      • 12. Nguyen, K.D.: ‘On the adaptive control of spherical actuators’, Trans. Inst. Meas. Control, 2019, 41, (3), pp. 816827.
    13. 13)
      • 13. Nguyen, K.D., Dankowicz, H.: ‘Cooperative control of networked robots on a dynamic platform in the presence of communication delays’, Int. J. Robust Nonlinear Control, 2017, 27, (9), pp. 14331461.
    14. 14)
      • 14. Cao, C., Hovakimyan, N.: ‘Stability margins of ℒ1 adaptive control architecture’, IEEE Trans. Autom. Control, 2010, 55, (2), pp. 480487.
    15. 15)
      • 15. Kharisov, E., Kim, K.K., Hovakimyan, N., et al: ‘Limiting behavior of ℒ1 adaptive controllers’. AIAA Guidance, Navigation, and Control Conf., Portland, Oregon, 2011, p. 6441.
    16. 16)
      • 16. Wang, X., Hovakimyan, N., Sha, L.: ‘L1Simplex: fault-tolerant control of cyber-physical systems’. ACM/IEEE Int. Conf. on Cyber-Physical Systems, Philadelphia, USA, 2013, pp. 4150.
    17. 17)
      • 17. Li, D., Hovakimyan, N., Cao, C., et al: ‘Filter design for feedback-loop trade-off of ℒ1 adaptive controller: a linear matrix inequality approach’. AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, USA, 2008, p. 6280.
    18. 18)
      • 18. Nguyen, K.D., Li, Y., Dankowicz, H.: ‘Delay robustness of an L1 adaptive controller for a class of systems with unknown matched nonlinearities’, IEEE Trans. Autom. Control, 2017, 62, (10), pp. 54855491.
    19. 19)
      • 19. Nguyen, K.D., Dankowicz, H., Hovakimyan, N.: ‘Marginal stability in L1 adaptive control of manipulators’. ASME Int. Conf. on Multibody Systems, Nonlinear Dynamics, and Control, Portland, OR, 2013, p. DETC2013-12744.
    20. 20)
      • 20. Zhou, B., Lin, Z., Duan, G.R.: ‘Truncated predictor feedback for linear systems with long time-varying input delays’, Automatica, 2012, 48, (10), pp. 23872399.
    21. 21)
      • 21. Basturk, H., Krstic, M.: ‘Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay’, Automatica, 2015, 58, pp. 131138.
    22. 22)
      • 22. Cacace, F., Conte, F., Germani, A., et al: ‘Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors’, Int. J. Robust and Nonlinear Control, 2016, 26, (16), pp. 35243540.
    23. 23)
      • 23. Deng, W., Yao, J., Ma, D.: ‘Time-varying input delay compensation for nonlinear systems with additive disturbance: an output feedback approach’, Int. J. Robust and Nonlinear Control, 2018, 28, (1), pp. 3152.
    24. 24)
      • 24. Niculescu, S.I., Annaswamy, A.M.: ‘An adaptive smith-controller for time-delay systems with relative degree n*2’, Syst. Control Lett., 2003, 49, (5), pp. 347358.
    25. 25)
      • 25. Evesque, S.S., Annaswamy, A.M., Niculescu, S.I., et al: ‘Adaptive control of a class of time-delay systems’, J. Dyn. Syst. Meas. Control, 2003, 125, (2), pp. 186193.
    26. 26)
      • 26. Nguyen, K.D.: ‘A predictor-based model reference adaptive controller for time-delay systems’, IEEE Trans. Autom. Control, 2018, 63, (12), pp. 43754382.
    27. 27)
      • 27. Chen, B., Lin, C., Liu, X., et al: ‘Guaranteed cost control of T–S fuzzy systems with input delay’, Int. J. Robust Nonlinear Control, 2008, 18, pp. 12301256.
    28. 28)
      • 28. Polyakov, A., Efimov, D., Perruquetti, W., et al: ‘Output stabilization of time-varying input delay systems using interval observation technique’, Automatica, 2013, 49, (11), pp. 34023410.
    29. 29)
      • 29. Bresch-Pietri, D., Chauvin, J., Petit, N.: ‘Adaptive control scheme for uncertain time-delay systems’, Automatica, 2012, 48, (8), pp. 15361552.
    30. 30)
      • 30. Bresch-Pietri, D., Krstic, M.: ‘Delay-adaptive control for nonlinear systems’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 12031218.
    31. 31)
      • 31. Lechappe, V., Rouquet, S., Gonzalez, A., et al: ‘Delay estimation and predictive control of uncertain systems with input delay: application to a DC motor’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 58495857.
    32. 32)
      • 32. Van Assche, V., Dambrine, M., Lafay, J.F., et al: ‘Some problems arising in the implementation of distributed-delay control law’. IEEE Conf. on Decision and Control, Phoenix, USA, 1999, pp. 46684672.
    33. 33)
      • 33. Nguyen, K.D., Dankowicz, H.: ‘Delay robustness and compensation in ℒ1 adaptive control’, Procedia IUTAM, 2017, vol. 22, pp. 1015.
    34. 34)
      • 34. Hale, J.K., Lunel, S.M.: ‘Introduction to functional differential equations’ (Springer Science & Business Media, Berlin, 1993).
    35. 35)
      • 35. Michiels, W., Niculescu, S.I.: ‘Stability and stabilization of time-delay systems’ (SIAM, Philadelphia, 2007).
    36. 36)
      • 36. Michiels, W., Niculescu, S.I.: ‘Stability, control, and computation for time-delay systems: an eigenvalue-based approach’ (SIAM, Philadelphia, 2014).
    37. 37)
      • 37. Lam, J.: ‘Convergence of a class of Padé approximations for delay systems’, Int. J. Control, 1990, 52, (4), pp. 9891008.
    38. 38)
      • 38. Rutland, N.K., Lane, P.G.: ‘Computing the 1-norm of the impulse response of linear time-invariant systems’, Syst. Control Lett., 1995, 26, (3), pp. 211221.
    39. 39)
      • 39. Dankowicz, H., Schilder, F.: ‘Recipes for continuation’ (SIAM, Philadelphia, 2013).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5953
Loading

Related content

content/journals/10.1049/iet-cta.2018.5953
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address