Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Global saturated velocity-free finite-time control for attitude tracking of spacecraft

This study investigates the problem of global finite-time attitude tracking for spacecraft subject to actuator constraints and attitude measurements only. A velocity-free saturated hybrid proportional–derivative (PD) plus spacecraft dynamics (PD+) control is proposed. Benefiting from the hybrid control technique, the unwinding phenomenon is completely avoided and the global stability is achieved. Lyapunov stability theory and homogeneous method are employed to show global finite-time tracking. Advantages of the proposed control include simple and intuitive structure and the absence of velocity measurements, and thus it is ready to implement. An additive feature is that the proposed control is explicitly upper bounded and hence it can assure that actuator constraints will not be violated by selecting the control gains a priori. Simulations are performed to illustrate the effectiveness and improved performance of the proposed approach.

References

    1. 1)
      • 24. Akella, M.R., Valdivia, A., Kotamraju, G.R.: ‘Velocity-free attitude controllers subject to actuator magnitude and rate saturations’, J. Guid. Control Dyn., 2005, 28, (4), pp. 659666.
    2. 2)
      • 35. Gui, H.C., Vukovich, G.: ‘Global finite-time attitude tracking via quaternion feedback’, Syst. Control Lett., 2016, 97, pp. 176183.
    3. 3)
      • 12. Du, H.B., Li, S.H., Qian, C.J.: ‘Finite-time attitude tracking control of spacecraft with application to attitude synchronization’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27112717.
    4. 4)
      • 17. Perez-Arancibia, N.O., Tsao, T.C., Gibson, J.S.: ‘Saturation-induced instability and its avoidance in adaptive control of hard disk drives’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 368382.
    5. 5)
      • 22. de Ruiter, A.H.J.: ‘Adaptive spacecraft attitude tracking control with actuator saturation’, J. Guid. Control Dyn., 2010, 33, (5), pp. 16921696.
    6. 6)
      • 5. Lizarraide, F., Wen, J.T.: ‘Attitude control without angular velocity measurement: a passivity approach’, IEEE Trans. Autom. Control, 1996, 41, (3), pp. 468472.
    7. 7)
      • 30. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: ‘Quaternion-based hybrid control for robust global attitude tracking’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 25552566.
    8. 8)
      • 20. Boskovic, J.D., Li, S.M., Mehra, R.K.: ‘Robust tracking control design for spacecraft under control input saturation’, J. Guid. Control Dyn., 2004, 27, (4), pp. 627633.
    9. 9)
      • 15. Zou, A.M.: ‘Finite-time output feedback attitude tracking control for rigid spacecraft’, IEEE Trans. Control Syst. Technol., 2014, 22, (1), pp. 338345.
    10. 10)
      • 29. Mayhew, C.G., Sanfelice, R.G., Teel, A.R.: ‘Robust global asymptotic attitude stabilization of a rigid body by quaternion-based hybrid feedback’. Proc. Joint IEEE Conf. Decision Control/Chinese Control Conf., Shanghai, China, December 2009, pp. 25222527.
    11. 11)
      • 3. Akella, M.R., Thakur, D., Mazenc, F.: ‘Partial Lyapunov strictification: smooth angular velocity observers for attitude tracking control’, J. Guid. Control Dyn., 2015, 38, (3), pp. 442451.
    12. 12)
      • 25. Gui, H.C., Vukovich, G.: ‘Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs’, Int. J. Robust Nonlinear Control, 2017, 27, (1), pp. 1538.
    13. 13)
      • 16. Bernstein, D.S., Michel, A.N.: ‘A chronological bibliography on saturating actuators’, Int. J. Robust Nonlinear Control, 1995, 5, (5), pp. 375380.
    14. 14)
      • 9. Wong, H, de Queiroz, M.S., Kapila, V.: ‘Adaptive tracking control using synthesized velocity from attitude measurements’, Automatica, 2001, 37, (6), pp. 947953.
    15. 15)
      • 32. Lee, T.: ‘Global exponential attitude tracking controls on SO(3)’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 28372842.
    16. 16)
      • 36. Xia, Y.Q., Su, Y.X.: ‘Saturated output feedback control for global asymptotic attitude tracking of spacecraft’, J. Guid. Control Dyn., 2018, 41, (10), pp. 23002307.
    17. 17)
      • 23. Sun, S.H., Zhao, L., Jia, Y.M.: ‘Finite-time output feedback attitude stabilisation for rigid spacecraft with input constraints’, IET Control Theory Applic., 2016, 10, (14), pp. 17401750.
    18. 18)
      • 27. Zou, A.M., de Ruiter, A.H.J., Kumar, K.D.: ‘Finite-time attitude tracking control for rigid spacecraft with control input constraints’, IET Control Theory Applic., 2017, 11, (7), pp. 931940.
    19. 19)
      • 26. Zou, A.M., de Ruiter, A.H.J., Kumar, K.D.: ‘Finite-time output feedback attitude control for rigid spacecraft under control input saturation’, J. Franklin Inst., 2016, 353, (17), pp. 44424470.
    20. 20)
      • 31. Su, J.Y., Cai, K.Y.: ‘Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking’, J. Guid. Control Dyn., 2011, 34, (4), pp. 12601263.
    21. 21)
      • 1. Schlanbusch, R., Loria, A., Kristiansen, R., et al: ‘PD+ based output feedback attitude control of rigid bodies’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21462152.
    22. 22)
      • 13. Zhao, L., Jia, Y.: ‘Finite-time attitude stabilisation for a class of stochastic spacecraft systems’, IET Control Theory Applic., 2015, 9, (8), pp. 13201327.
    23. 23)
      • 39. Luo, W.C., Chu, Y.C., Ling, K.V.: ‘Inverse optimal adaptive control for attitude tracking of spacecraft’, IEEE Trans. Autom. Control, 2005, 50, (11), pp. 16391654.
    24. 24)
      • 6. Akella, M.R.: ‘Rigid body attitude tracking without angular velocity feedback’, Syst. Control Lett., 2001, 42, (4), pp. 321326.
    25. 25)
      • 8. Costic, B.T., Dawson, D.M., De Queiroz, M.S., et al: ‘Quaternion-based adaptive attitude tracking controller without velocity measurements’, J. Guid. Control Dyn., 2001, 24, (6), pp. 12141222.
    26. 26)
      • 33. Schlanbusch, R., Grotli, E.I., Loria, A., et al: ‘Hybrid attitude tracking of rigid bodies without angular velocity measurement’, Syst. Control Lett., 2012, 61, (4), pp. 595601.
    27. 27)
      • 19. Robinett, R.D., Parker, G.G., Schaub, H., et al: ‘Lyapunov optimal saturated control for nonlinear systems’, J. Guid. Control Dyn., 1997, 20, (6), pp. 10831088.
    28. 28)
      • 40. Lo, S.C., Chen, Y.P.: ‘Smooth sliding-mode control for spacecraft attitude tracking maneuvers’, J. Guid. Control Dyn., 1995, 18, (6), pp. 13451349.
    29. 29)
      • 41. Sanfelice, R.G., Goebel, R., Teel, A.R.: ‘Invariance principles for hybrid systems with connections to detectability and asymptotic stability’, IEEE Trans. Autom. Control, 2007, 52, (12), pp. 22822297.
    30. 30)
      • 2. Chunodkar, A.A., Akella, M.R.: ‘Switching angular velocity observer for rigid-body attitude stabilization and tracking control’, J. Guid. Control Dyn., 2014, 37, (3), pp. 869878.
    31. 31)
      • 37. Su, Y.X., Zheng, C.H.: ‘Simple nonlinear proportional-derivative control for global finite-time stabilization of spacecraft’, J. Guid. Control Dyn., 2015, 38, pp. 173178.
    32. 32)
      • 7. Tayebi, A.: ‘Unit quaternion-based output feedback for the attitude tracking problem’, IEEE Trans. Autom. Control, 2008, 53, (6), pp. 15161520.
    33. 33)
      • 4. de Ruiter, A.H.J.: ‘Observer-based adaptive spacecraft attitude control with guaranteed performance bounds’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 31463151.
    34. 34)
      • 21. Ali, I., Radice, G., Kim, J.: ‘Backstepping control design with actuator torque bound for spacecraft attitude maneuver’, J. Guid. Control Dyn., 2010, 33, (1), pp. 254259.
    35. 35)
      • 34. Schlanbusch, R., Grotli, E.I.: ‘Hybrid certainty equivalence control of rigid bodies with quaternion measurements’, IEEE Trans. Autom. Control, 2015, 60, (9), pp. 25122517.
    36. 36)
      • 11. Hong, Y., Xu, Y., Huang, J.: ‘Finite-time control for robot manipulators’, Syst. Control Lett., 2002, 46, (4), pp. 185200.
    37. 37)
      • 10. Bhat, S.P., Bernstein, D.S.: ‘Continuous finite-time stabilization of the translational and rotational double integrators’, IEEE Trans. Autom. Control, 1998, 43, (5), pp. 678682.
    38. 38)
      • 28. Bhat, S.P., Bernstein, D.S.: ‘A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon’, Syst. Control Lett., 2000, 39, (1), pp. 6370.
    39. 39)
      • 38. Hardy, G.H., Littlewood, J.E., Polya, G.: ‘Inequalities’ (Cambridge University Press, Cambridge, U.K., 1952).
    40. 40)
      • 18. Dixon, W.E.: ‘Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics’, IEEE Trans. Autom. Control, 2007, 52, (3), pp. 488493.
    41. 41)
      • 14. Zou, A.M., Kumar, K.D., Hou, Z.G., et al: ‘Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (4), pp. 950963.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5952
Loading

Related content

content/journals/10.1049/iet-cta.2018.5952
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address