access icon free Sliding mode control for uncertain discrete-time systems based on fractional order reaching law

The design and validation of a new fractional order (FO) reaching law for uncertain discrete-time systems is studied. A sliding mode controller is subsequently constructed by adopting this law. Unlike previous works, the presented reaching law is established on the basis of the Grünwald–Letnikow FO calculus of the switching function. A high-order disturbance compensator is integrated into this reaching law to evaluate and compensate the disturbance. A rigorous theoretical analysis is given to demonstrate the superior performance of the reaching law. Results indicate that the developed method owns the ability to guarantee an O(Tn +1) order ultimate magnitude of the quasi-sliding mode domain. Therefore, the presented method is capable of further mitigating chattering and guaranteeing a further improvement on the control accuracy in comparison with previous reaching law methods. Moreover, sliding mode dynamics of the discrete-time system in and out the vicinities of the sliding surface is analysed in detail. Simulation results are presented to verify the feasibility and effectiveness of the developed method.

Inspec keywords: control system synthesis; variable structure systems; uncertain systems; discrete time systems; switching systems (control)

Other keywords: Grünwald–Letnikow FO calculus; sliding mode control; sliding surface; fractional order reaching law; switching function; high-order disturbance compensator; quasi-sliding mode domain; uncertain discrete-time systems; sliding mode controller; sliding mode dynamics

Subjects: Discrete control systems; Time-varying control systems; Control system analysis and synthesis methods; Multivariable control systems

References

    1. 1)
      • 19. Latosiński, P.: ‘Sliding mode control based on the reaching law approach – a brief survey’. 22nd Int. Conf. on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 28–31 August 2017, pp. 519524.
    2. 2)
      • 14. Bartoszewicz, A.: ‘Discrete-time quasi-sliding-mode control strategies’, IEEE Trans. Ind. Electron., 1998, 45, (4), pp. 633637.
    3. 3)
      • 45. Abidi, K., Xu, J.-X., She, J.-H.: ‘A discrete-time terminal sliding-mode control approach applied to a motion control problem’, IEEE Trans. Ind. Electron., 2009, 56, (9), pp. 36193627.
    4. 4)
      • 10. Gao, W., Wang, Y., Homaifa, A.: ‘Discrete-time variable structure control systems’, IEEE Trans. Ind. Electron., 1995, 42, (2), pp. 117122.
    5. 5)
      • 22. Qu, S., Xia, X., Zhang, J.: ‘Dynamics of discrete-time sliding-mode-control uncertain systems with a disturbance compensator’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 35023510.
    6. 6)
      • 36. Yin, C., Huang, X., Chen, Y., et al: ‘Fractional-order exponential switching technique to enhance sliding mode control’, Appl. Math. Model, 2017, 44, pp. 705726.
    7. 7)
      • 13. Bartoszewicz, A.: ‘Remarks on discrete-time variable structure control systems’, IEEE Trans. Ind. Electron., 1996, 43, (1), pp. 235238.
    8. 8)
      • 37. Yin, C., Cheng, Y., Chen, Y., et al: ‘Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems’, Nonlinear Dyn., 2015, 82, pp. 3952.
    9. 9)
      • 38. Yin, C., Huang, X., Dadras, S., et al: ‘Design of optimal lighting control strategy based on multi-variable fractional-order extremum seeking method’, Inf. Sci., 2018, 465, pp. 3860.
    10. 10)
      • 6. Janardhanan, S., Bandyopadhyay, B.: ‘Multirate output feedback based robust quasi-sliding mode control of discrete-time systems’, IEEE Trans. Autom. Control, 2007, 52, (3), pp. 499503.
    11. 11)
      • 41. Yin, C., Chen, Y., Zhong, S.: ‘Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems’, Automatica, 2014, 50, (12), pp. 31713181.
    12. 12)
      • 43. Shah, P., Agashe, S.: ‘Review of fractional PID controller’, Mechatronics, 2016, 38, pp. 2941.
    13. 13)
      • 35. Guo, Y., Ma, B., Chen, L., et al: ‘Adaptive sliding mode control for a class of caputo type fractional-order interval systems with perturbation’, IET Control Theory Appl., 2017, 11, (1), pp. 5765.
    14. 14)
      • 24. Eun, Y., Cho, D.: ‘Robustness of multivariable discrete-time variable structure control’, Int. J. Control, 1999, 72, (12), pp. 11061115.
    15. 15)
      • 8. Yu, X., Wang, B., Li, X.: ‘Computer-controlled variable structure systems: the state-of-the-art’, IEEE Trans. Ind. Inf., 2012, 8, (2), pp. 197205.
    16. 16)
      • 11. Veselic, B., Perunicic-Drazenovic, B., Milosavljevic, C.: ‘Improved discrete-time sliding-mode position control using Euler velocity estimation’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38403847.
    17. 17)
      • 30. Bartoszewicz, A., Latosinski, P.: ‘Generalization of Gao's reaching law for higher relative degree sliding variables’, IEEE Trans. Autom. Control, 2018, 63, (9), pp. 31733179.
    18. 18)
      • 25. Du, H., Yu, X., Chen, M., et al: ‘Chattering-free discrete-time sliding mode control’, Automatica, 2016, 68, (3), pp. 8791.
    19. 19)
      • 33. Mujumdar, A., Tamhane, B., Kurode, S.: ‘Observer-based sliding mode control for a class of noncommensurate fractional-order systems’, IEEE ASME Trans. Mechatron., 2015, 20, (5), pp. 25042512.
    20. 20)
      • 5. Ignaciuk, P., Bartoszewicz, A.: ‘Sliding mode dead-beat control of perishable inventory systems with multiple suppliers’, IEEE Trans. Autom. Sci. Eng., 2012, 9, (2), pp. 418423.
    21. 21)
      • 4. Xu, Q., Cao, Z.: ‘Piezoelectric positioning control with output-based discrete-time terminal sliding mode control’, IET Control Theory Appl., 2017, 11, (5), pp. 27162723.
    22. 22)
      • 29. Bartoszewicz, A., Latosinski, P.: ‘Reaching law for DSMC systems with relative degree 2 switching variable’, Int. J. Control, 2017, 90, (8), pp. 16261638.
    23. 23)
      • 42. Podlubny, I.: ‘Fractional differential equations’ (Academic, New York, NY, 1999).
    24. 24)
      • 23. Eun, Y., Kim, J., Kim, K., et al: ‘Discrete-time variable structure controller with a decoupled disturbance compensator and it application to a CNC servomechanism’, IEEE Trans. Control Syst. Technol., 1999, 7, (4), pp. 414423.
    25. 25)
      • 15. Bartoszewicz, A., Leśniewski, P.: ‘Reaching law approach to the sliding mode control of periodic review inventory systems’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (3), pp. 810817.
    26. 26)
      • 47. Griffths, D., Smith, I.: ‘Numerical methods for engineers’ (Blackwell Scientific, London, 1991).
    27. 27)
      • 18. Bartolini, G., Ferrara, A., Utkin, V.: ‘Adaptive sliding mode control in discrete-time systems’, Automatica, 1995, 31, (5), pp. 769773.
    28. 28)
      • 17. Bartoszewicz, A., Leśniewski, P.: ‘Discrete time sliding mode control with reduced switching – a new reaching law approach’, Int. J. Robust Nonlinear Control, 2016, 26, (1), pp. 4768.
    29. 29)
      • 7. Furuta, K.: ‘Sliding mode control of a discrete system’, Syst. Control Lett., 1990, 14, (2), pp. 145152.
    30. 30)
      • 9. Gao, W., Hung, J.: ‘Variable structure control of nonlinear systems: a new approach’, IEEE Trans. Ind. Electron., 1993, 40, (1), pp. 4555.
    31. 31)
      • 20. Niu, Y., Ho, D., Wang, Z.: ‘Improved sliding mode control for discrete-time systems via reaching law’, IET Control Theory Appl., 2010, 4, (11), pp. 22452251.
    32. 32)
      • 16. Bartoszewicz, A., Leśniewski, P.: ‘New switching and nonswitching type reaching laws for SMC of discrete time system’, IEEE Trans. Control Syst. Technol., 2016, 24, (2), pp. 670677.
    33. 33)
      • 26. Chakrabarty, S., Bandyopadhyay, B.: ‘A generalized reaching law for discrete time sliding mode control’, Automatica, 2015, 52, (3), pp. 8386.
    34. 34)
      • 1. Niu, X., Gao, X., Weng, Y.: ‘Data-driven sliding mode tracking for unknown Markovian jump non-linear systems’, IET Control Theory Appl., 2017, 11, (16), pp. 27162723.
    35. 35)
      • 31. Kamal, S., Raman, A., Bandyopadhyay, B.: ‘Finite-time stabilization of fractional order uncertain chain of integrator: an integral sliding mode approach’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 15971602.
    36. 36)
      • 44. Sun, G., Wu, L., Kuang, Z., et al: ‘Practical tracking control of linear motor via fractional-order sliding mode’, Automatica, 2018, 94, pp. 221235.
    37. 37)
      • 46. Abidi, K., Xu, J.-X., Yu, X.: ‘On the discrete-time integral sliding mode control’, IEEE Trans. Autom. Control, 2007, 52, (4), pp. 709715.
    38. 38)
      • 2. Hu, X., Wu, L., Si, X., et al: ‘Adaptive sliding mode control of non-linear non-minimum phase system with input delay’, IET Control Theory Appl., 2017, 11, (8), pp. 11531161.
    39. 39)
      • 21. Ma, H., Wu, J., Xiong, Z.: ‘Discrete-time sliding-mode control with improved quasi-sliding-mode domain’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 62926304.
    40. 40)
      • 3. Trip, R., Cucuzzella, M., Persis, C., et al: ‘Passivity-based design of sliding modes for optimal load frequency control’, IEEE Trans. Control Syst. Technol., 2018, to appear, doi: 10.1109/TCST.2018.2841844.
    41. 41)
      • 32. Dabiri, A., Butcher, E., Poursina, M., et al: ‘Optimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systems’, IEEE Trans. Autom. Control, 2018, 63, (4), pp. 9891002.
    42. 42)
      • 39. Sanz, R., Garcia, P., Albertos, P.: ‘Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay’, Automatica, 2016, 72, pp. 205208.
    43. 43)
      • 40. Chakrabarty, S., Bandyopadhyay, B.: ‘Minimum ultimate band design of discrete sliding mode control’, Asian J. Control, 2015, 18, (1), pp. 19.
    44. 44)
      • 28. Ma, H., Wu, J., Xiong, Z.: ‘A novel exponential reaching law of discrete-time sliding-mode control’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 38403850.
    45. 45)
      • 27. Chakrabarty, S., Bandyopadhyay, B.: ‘A generalized reaching law with different convergence rates’, Automatica, 2016, 63, (3), pp. 3437.
    46. 46)
      • 12. Su, W., Drakunov, S., Ozguner, U.: ‘An Oat(T2) boundary layer in sliding mode for sampled-data systems’, IEEE Trans. Autom. Control, 2000, 45, (3), pp. 482485.
    47. 47)
      • 34. Xiong, L., Wang, J., Mi, X., et al: ‘Fractional order sliding mode based direct power control of grid-connected DFIG’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 30873096.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5932
Loading

Related content

content/journals/10.1049/iet-cta.2018.5932
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading