Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free filtering for discrete-time 2D T–S fuzzy systems with finite frequency disturbances

This study investigates the filter design problem for two-dimensional (2D) discrete-time non-linear systems in Takagi–Sugeno (T–S) fuzzy model. The frequency of the exogenous disturbances is assumed to belong to a known finite frequency (FF) domain. An FF performance is defined for 2D discrete-time systems, which generalises the standard one and makes use of the frequency-domain characteristics of practical signals. By virtue of the defined FF performance, sufficient conditions are proposed for analysing the disturbance attenuation performance of the filtering error system. Efficient conditions are obtained to guarantee the existence of a filter and such that the error system is asymptotically stable with an FF performance index. A systematic filter design scheme is developed by converting the corresponding fuzzy filter design into a convex optimisation problem. Finally, a gas absorption system is employed to illustrate the validity of the proposed methods.

References

    1. 1)
      • 2. Lu, W., Antoniou, A.: ‘Two-dimensional digital filters’ (Marcel Dekker, New York, 1992).
    2. 2)
      • 51. Li, L., Wang, W., Li, X.: ‘New approach to H filtering of two-dimensional T–S fuzzy systems’, Int. J. Robust Nonlinear Control, 2013, 23, (17), pp. 19902012.
    3. 3)
      • 44. Wang, H., Yang, G.H.: ‘H controller design for affine fuzzy systems based on piecewise lyapunov functions in finite-frequency domain’, Fuzzy Sets Syst., 2016, 290, (C), pp. 2238.
    4. 4)
      • 33. Yang, R.H., Lim, Y.C.: ‘A dynamic frequency grid allocation scheme for the efficient design of equiripple fir filters’, IEEE Trans. Signal Process., 1996, 44, (9), pp. 23352339.
    5. 5)
      • 13. Cao, S.G., Rees, N.W., Feng, G.: ‘Analysis and design for a class of complex control systems part II: fuzzy controller design’, Automatica, 1997, 33, (6), pp. 10291039.
    6. 6)
      • 38. Ren, Y., Ding, D.-W., Li, Q.: ‘Finite-frequency fault detection for two-dimensional Fornasini–Marchesini dyanmical systems’, Int. J. Syst. Sci., 2017, 48, (12), pp. 26102621.
    7. 7)
      • 5. Lam, J., Xu, S., Zou, Y., et al: ‘Robust output feedback stabilization for two-dimensional continuous systems in Roesser form’, Appl. Math. Lett., 2004, 17, (12), pp. 13311341.
    8. 8)
      • 21. Duan, Z., Xiang, Z., Karimi, H.: ‘Stability and l1-gain analysis for positive 2-D T-S fuzzy state-delayed systems in the second FM model’, Neurocomputing, 2014, 142, pp. 209215.
    9. 9)
      • 23. Luo, Y., Wang, Z., Liang, J., et al: ‘H control for 2-D fuzzy systems with interval time-varying delays and missing measurements’, IEEE Trans. Cybern., 2017, 47, (2), pp. 365377.
    10. 10)
      • 27. Tuan, H.D., Apkarian, P., Nguyen, T.Q., et al: ‘Robust mixed H2/H filtering of 2-D systems’, IEEE Trans. Signal Process., 2002, 50, (7), pp. 17591771.
    11. 11)
      • 36. Li, X., Gao, H., Wang, C.: ‘Generalized Kalman–Yakubovich–Popov lemma for 2-D FM LSS model’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 30903103.
    12. 12)
      • 1. Kaczorek, T.: ‘Two-dimensional linear systems’ (Springer-Verlag, Berlin, 1985).
    13. 13)
      • 17. Xie, X.-P., Yue, D., Peng, C.: ‘Event-triggered real-time scheduling stabilization of discrete-time Takagi–Sugeno fuzzy systems via a new weighted matrix approach’, Inf. Sci., 2018, 457-458, pp. 195207.
    14. 14)
      • 20. Ding, D.-W., Li, X., Yin, Y., et al: ‘Further studies on relaxed stabilization conditions for discrete-time two-dimension Takagi–Sugeno fuzzy systems’, Inf. Sci., 2012, 189, pp. 143154.
    15. 15)
      • 46. Du, C., Xie, L.: ‘Hcontrol and filtering of two-dimensional systems’ (Springer-Verlag, Berlin, Heidelberg, 2002).
    16. 16)
      • 41. Ding, D., Yang, G.: ‘Fuzzy filter design for nonlinear systems in finite-frequency domain’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 935945.
    17. 17)
      • 8. Shaker, H.R., Tahavori, M.: ‘Stability analysis for a class of discrete-time two-dimensional nonlinear systems’, Multidimens. Syst. Signal Process., 2010, 21, (3), pp. 293299.
    18. 18)
      • 29. Chen, Y., Zhang, W., Gao, H.: ‘Finite frequency H control for building under earthquake excitation’, Mechatronics, 2010, 20, (1), pp. 128142.
    19. 19)
      • 19. Li, L., Wang, W.: ‘Fuzzy modeling and H control for general 2-D nonlinear systems’, Fuzzy Sets Syst., 2012, 207, pp. 126.
    20. 20)
      • 10. Singh, V.: ‘New approach to stability of 2-D discrete systems with state saturation’, Signal Process., 2012, 92, (1), pp. 240247.
    21. 21)
      • 7. Shi, S., Fei, Z., Sun, W., et al: ‘Stabilization of 2-D switched systems with all modes unstable via switching signal regulation’, IEEE Trans. Autom. Control, 2018, 63, (3), pp. 857863.
    22. 22)
      • 16. Xie, X., Yue, D., Peng, C.: ‘Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach’, IEEE Trans. Fuzzy Syst., 2017, 25, (5), pp. 12811292.
    23. 23)
      • 25. Li, X., Gao, H.: ‘Robust finite frequency H filtering for uncertain 2-D systems: the FM model case’, Automatica, 2013, 49, (8), pp. 24462452.
    24. 24)
      • 31. Chen, J., Patton, R.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, Dordrecht, 1999).
    25. 25)
      • 37. Li, X., Gao, H.: ‘Robust finite frequency H filtering for uncertain 2-D Roesser systems’, Automatica, 2012, 48, pp. 11631170.
    26. 26)
      • 47. Baniamerian, A., Meskin, N., Khorasani, K: ‘Geometric fault detection and isolation of two-dimensional (2D) systems’. American Control Conf., Washington, DC, USA, 2013, pp. 35413548.
    27. 27)
      • 43. Yang, H., Xia, Y., Liu, B.: ‘Fault detection for t-s fuzzy discrete systems in finite-frequency domain’, IEEE Trans. Syst. Man Cybern., B, Cybern., 2011, 41, (4), pp. 911920.
    28. 28)
      • 39. Wang, L., Wang, W., Zhang, G., et al: ‘Generalised Kalman–Yakubovich–Popov lemma with its application in finite frequency positive realness control for two-dimensional continuous-discrete systems in the Roesser model form’, IET Control Theory Applic., 2015, 9, (11), pp. 16761682.
    29. 29)
      • 14. Xie, X., Ma, H., Zhao, Y., et al: ‘Control synthesis of discrete-time T–S fuzzy systems based on a novel non-PDC control scheme’, IEEE Trans. Fuzzy Syst., 2014, 21, (1), pp. 147157.
    30. 30)
      • 11. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its application to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, 15, (1), pp. 116132.
    31. 31)
      • 48. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to H control’, Int. J. Robust Nonlinear Control, 1994, 4, (4), pp. 421448.
    32. 32)
      • 26. Li, X., Gao, H.: ‘Reduced-order generalized H filtering for linear discrete-time systems with application to channel equalization’, IEEE Trans. Signal Process., 2014, 62, (13), pp. 33933402.
    33. 33)
      • 4. Liu, X., Yu, W., Wang, L.: ‘Necessary and sufficient asymptotic stability criterion for 2-D positive systems with time-varying state delays described by Roesser model’, IET Control Theory Appl., 2011, 5, (5), pp. 663668.
    34. 34)
      • 15. Zhou, S., Lam, J., Xue, A.: ‘H filtering of discrete-time fuzzy systems via basis-dependent Lyapunov function approach’, Fuzzy Sets Syst., 2007, 158, (2), pp. 180193.
    35. 35)
      • 32. Su, W.C., Zhao, Y., Li, J.F., et al: ‘Active suspension control with frequency band constraints and actuator input delay’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 530537.
    36. 36)
      • 28. Chen, S., Fong, T.: ‘Robust filtering for 2-D state-delayed systems with NFT uncertainties’, IEEE Trans. Signal Process., 2006, 54, (1), pp. 274285.
    37. 37)
      • 24. Woods, J., Radewan, C.: ‘Kalman filtering in two dimensions: further results’, IEEE Trans. Inf. Theory, 1977, 23, (4), pp. 473482.
    38. 38)
      • 45. Duan, Z., Zhou, J., Shen, J.: ‘Finite frequency filter design for nonlinear 2-D continuous systems in T-S form’, J. Franklin Inst., 2017, 354, (18), pp. 86068625.
    39. 39)
      • 12. Feng, G., Cao, S.G., Rees, N.W.: ‘An approach to H control of a class of nonlinear system’, Automatica, 1996, 32, (10), pp. 14691474.
    40. 40)
      • 9. Dey, A., Kar, H.: ‘Robust stability of 2-D discrete systems employing generalized overflow nonlinearities: an LMI approach’, Digit. Signal Process., 2011, 21, (2), pp. 262269.
    41. 41)
      • 35. Yang, R., Xie, L., Zhang, C.: ‘Generalized two-dimensional Kalman–Yakubovich–Popov lemma for discrete Roesser model’, IEEE Trans. Circuits Syst. I, Regul, Pap., 2008, 55, (10), pp. 32233233.
    42. 42)
      • 40. Iwasaki, T., Hara, S., Fradkov, A.L.: ‘Time domain interpretations of frequency domain inequalities on (semi)finite ranges’, Syst. Control Lett., 2005, 54, (7), pp. 681691.
    43. 43)
      • 18. Vu, V.-P., Wang, W.-J.: ‘Observer synthesis for uncertain Takagi–Sugeno fuzzy systems with multiple output matrices’, IET Control Theory Applic., 2016, 10, (2), pp. 151161.
    44. 44)
      • 34. Iwasaki, T., Hara, S.: ‘Generalized KYP lemma: unified frequency domain inequalities with design applications’, IEEE Trans. Autom. Control, 2005, 50, (1), pp. 4159.
    45. 45)
      • 22. Li, L.: ‘Observer-based H controller for 2-D T-S fuzzy model’, Int. J. Syst. Sci., 2015, 47, (14), pp. 34553464.
    46. 46)
      • 42. Ding, D.W., Li, X.J., Du, X.D.X., et al: ‘Finite-frequency model reduction of Takagi–Sugeno fuzzy systems’, IEEE Trans. Fuzzy Syst., 2016, 24, (6), pp. 14641474.
    47. 47)
      • 3. Paszke, W., Galkowski, K., Rogers, E., et al: ‘Linear repetitive process control theory applied to a physical example’, Int. J. Appl. Math. Comput. Sci., 2003, 13, (1), pp. 8799.
    48. 48)
      • 50. Dymkov, M., Galkowski, K., Rogers, E., et al: ‘Modeling and control of a sorption process using 2D systems theory’. The 7th Int. Workshop on Multidimensional Systems, Poitiers, France, 2011, pp. 15.
    49. 49)
      • 6. Huang, S., Xiang, Z.: ‘Stability analysis of two-dimensional switched non-linear continuous-time systems’, IET Control Theory Applic., 2016, 10, (6), pp. 724729.
    50. 50)
      • 49. Marszalek, W.: ‘Two-dimensional state-space discrete models for hyperbolic partial differential equations’, Appl. Math. Model., 1984, 8, (1), pp. 1114.
    51. 51)
      • 30. Zhou, K., Doyle, J.C., Glover, N.: ‘Robust and optimal control’ (Prentice Hall, Upper Saddle River, NJ, USA, 1996).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5918
Loading

Related content

content/journals/10.1049/iet-cta.2018.5918
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address