© The Institution of Engineering and Technology
This study investigates the distributed fixedtime consensus tracking for highorder uncertain nonlinear multiagent systems with switching topologies. Each follower is assumed to be in strictfeedback form with both unknown parameters and mismatched disturbances. Different from traditional centralised tracking control problem, only a subset of the agents can acquire the desired trajectory information. By adopting backstepping method and dynamic surface control technique, the distributed fixedtime consensus protocol and appropriate adaptive laws are designed without requiring knowledge of the upper bounds of disturbances. Moreover, the problem of ‘explosion of complexity’ in standard backstepping design is avoided. Under the proposed control protocol, it is shown from the Lyapunovbased analysis that the tracking errors between all followers and the leader can converge to a small neighbourhood of the origin within a fixed time, even though the communication structures among agents dynamically change over time. Finally, a numerical example is carried out to illustrate the effectiveness of the proposed method.
References


1)

1. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 1465–1476.

2)

2. OlfatiSaber, R.: ‘Flocking for multiagent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401–420.

3)

3. Moreau, L.: ‘Stability of multiagent systems with timedependent communication links’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 169–182.

4)

4. Su, H., Wu, H., Chen, X., et al: ‘Positive edge consensus of complex networks’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2018, 48, (12), pp. 2242–2250.

5)

5. Wu, H., Su, H.: ‘Discretetime positive edgeconsensus for undirected and directed nodal networks’, IEEE Trans. Circuits Syst. II, 2018, 65, (2), pp. 221–225.

6)

6. Su, H., Chen, M., Wang, X., et al: ‘Semiglobal observerbased leaderfollowing consensus with input saturation’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 2842–2850.

7)

7. Li, W.: ‘Distributed output tracking of highorder nonlinear multiagent systems with unstable linearization’, Syst. Control Lett., 2015, 83, pp. 67–73.

8)

8. Liu, Y., Jia, Y.: ‘Consensus problem of highorder multiagent systems with external disturbances: an H∞ analysis approach’, Int. J. Robust Nonlinear Control, 2010, 20, (14), pp. 1579–1593.

9)

9. Cui, Y., Jia, Y.: ‘L2–L∞ consensus control for highorder multiagent systems with switching topologies and timevarying delays’, IET Control Theory Appl., 2012, 6, (12), pp. 1933–1940.

10)

10. Yoo, S.: ‘Synchronised tracking control for multiple strictfeedback nonlinear systems under switching network’, IET Control Theory Appl., 2014, 8, (8), pp. 546–553.

11)

11. Hua, C., You, X., Guan, X.: ‘Leaderfollowing consensus for a class of highorder nonlinear multiagent systems’, Automatica, 2016, 73, pp. 138–144.

12)

12. Bechlioulis, C.P., Rovithakis, G.A.: ‘Decentralized robust synchronization of unknown high order nonlinear multiagent systems with prescribed transient and steady state performance’, IEEE Trans. Autom. Control, 2017, 62, (1), pp. 123–134.

13)

13. Wang, Q., Fu, J., Wang, J.: ‘Fully distributed containment control of highorder multiagent systems with nonlinear dynamics’, Syst. Control Lett., 2017, 99, pp. 33–39.

14)

14. Cai, M., Xiang, Z., Guo, J.: ‘Adaptive finitetime consensus protocols for multiagent systems by using neural networks’, IET Control Theory Appl., 2016, 10, (4), pp. 371–380.

15)

15. Ghasemi, M., Nersesov, S.: ‘Finitetime coordination in multiagent systems using sliding mode control approach’, Automatica, 2014, 50, (4), pp. 1209–1216.

16)

16. Yu, S., Long, X.: ‘Finitetime consensus for secondorder multiagent systems with disturbances by integral sliding mode’, Automatica, 2015, 54, pp. 158–165.

17)

17. Tian, B., Zuo, Z., Wang, H.: ‘Leaderfollower fixedtime consensus of multiagent systems with highorder integrator dynamics’, Int. J. Control, 2017, 90, (7), pp. 1420–1427.

18)

18. Fu, J., Wang, J.: ‘Fixedtime coordinated tracking for secondorder multiagent systems with bounded input uncertainties’, Syst. Control Lett., 2016, 93, pp. 1–12.

19)

19. Zuo, Z.: ‘Nonsingular fixedtime consensus tracking for secondorder multiagent networks’, Automatica, 2015, 54, pp. 305–309.

20)

20. Zhang, B., Jia, Y.: ‘Fixedtime consensus protocols for multiagent systems with linear and nonlinear state measurements’, Nonlinear Dyn., 2015, 82, (4), pp. 1683–1690.

21)

21. Zuo, Z., Tie, L.: ‘Distributed robust finitetime nonlinear consensus protocols for multiagent systems’, Int. J. Syst. Sci., 2016, 47, (6), pp. 1366–1375.

22)

22. Wang, Q., Wang, Y., Sun, C.: ‘Fixedtime consensus of multiagent systems with directed and intermittent communications’, Asian J. Control, 2017, 19, (1), pp. 95–105.

23)

23. Cao, Y., Ren, W.: ‘Finitetime consensus for multiagent networks with unknown inherent nonlinear dynamics’, Automatica, 2014, 50, (10), pp. 2648–2656.

24)

24. Li, C., Qu, Z.: ‘Distributed finitetime consensus of nonlinear systems under switching topologies’, Automatica, 2014, 50, (6), pp. 1626–1631.

25)

25. Cai, M., Xiang, Z.: ‘Adaptive finitetime consensus tracking for multiple uncertain mechanical systems with input saturation’, Int. J. Robust Nonlinear Control, 2017, 27, (9), pp. 1653–1676.

26)

26. Wang, F., Chen, X., He, Y., et al: ‘Finitetime consensus problem for secondorder multiagent systems under switching topologies’, Asian J. Control, 2017, 19, (5), pp. 1756–1766.

27)

27. Ning, B., Jin, J., Zheng, J.: ‘Fixedtime consensus for multiagent systems with discontinuous inherent dynamics over switching topology’, Int. J. Syst. Sci., 2017, 48, (10), pp. 2023–2032.

28)

28. Swaroop, D., Hedrick, J., Yip, P., et al: ‘Dynamic surface control for a class of nonlinear systems’, IEEE Trans. Autom. Control, 2000, 45, (10), pp. 1893–1899.

29)

29. Shi, X., Lu, J., Li, Z., et al: ‘Robust adaptive distributed dynamic surface consensus tracking control for nonlinear multiagent systems with dynamic uncertainties’, J. Franklin Inst., 2016, 353, (17), pp. 4785–4802.

30)

30. Zhang, L., Hua, C., Guan, X.: ‘Distributed output feedback consensus tracking prescribed performance control for a class of nonlinear multiagent systems with unknown disturbances’, IET Control Theory Appl., 2016, 10, (8), pp. 877–883.

31)

31. Wang, C., Guo, L.: ‘Adaptive cooperative tracking control for a class of nonlinear timevarying multiagent systems’, J. Franklin Inst., 2017, 354, (15), pp. 6766–6782.

32)

32. Polyakov, A.: ‘Nonlinear feedback design for fixedtime stabilization of linear control systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 2106–2110.

33)

33. Zuo, Z., Wang, C.: ‘Adaptive trajectory tracking control of output constrained multirotors systems’, IET Control Theory Appl., 2014, 8, (13), pp. 1163–1174.

34)

34. Jiang, B., Hu, Q., Friswell, M.I.: ‘Fixedtime attitude control for rigid spacecraft with actuator saturation and faults’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 1892–1898.

35)

35. Li, T., Wang, D., Feng, G., et al: ‘A DSC approach to robust adaptive NN tracking control for strictfeedback nonlinear systems’, IEEE Trans. Syst. Man Cybern., B Cybern., 2010, 40, (3), pp. 915–927.

36)

36. Yang, Z.: ‘Robust control of nonlinear semistrict feedback systems using finitetime disturbance observers’, Int. J. Robust Nonlinear Control, 2017, 27, (17), pp. 3582–3603.

37)

37. Lu, M., Liu, L.: ‘Robust output consensus of networked heterogeneous nonlinear systems by distributed output regulation’, Automatica, 2018, 94, pp. 186–193.

38)

38. Su, H., Chen, M., Lam, J., et al: ‘Semiglobal leaderfollowing consensus of linear multiagent systems with input saturation via low gain feedback’, IEEE Trans. Circuits Syst. I, 2013, 60, (7), pp. 1881–1889.

39)

39. Su, H., Chen, M.: ‘Multiagent containment control with input saturation on switching topologies’, IET Control Theory Appl., 2015, 9, (3), pp. 399–409.

40)

40. Cong, Y., Feng, Z., Song, H., et al: ‘Containment control of singular heterogeneous multiagent systems’, J. Franklin Inst., 2018, 355, (11), pp. 4629–4643.

41)

41. Liu, T., Huang, J.: ‘Cooperative output regulation for a class of nonlinear multiagent systems with unknown control directions subject to switching networks’, IEEE Trans. Autom. Control, 2018, 63, (3), pp. 783–790.

42)

42. Wang, S., Huang, J.: ‘Cooperative output regulation of singular multiagent systems under switching network by standard reduction’, IEEE Trans. Circuits Syst. I, 2018, 65, (4), pp. 1377–1385.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2018.5892
Related content
content/journals/10.1049/ietcta.2018.5892
pub_keyword,iet_inspecKeyword,pub_concept
6
6