http://iet.metastore.ingenta.com
1887

Distributed fixed-time consensus tracking for high-order uncertain non-linear multi-agent systems with switching topologies

Distributed fixed-time consensus tracking for high-order uncertain non-linear multi-agent systems with switching topologies

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study investigates the distributed fixed-time consensus tracking for high-order uncertain non-linear multi-agent systems with switching topologies. Each follower is assumed to be in strict-feedback form with both unknown parameters and mismatched disturbances. Different from traditional centralised tracking control problem, only a subset of the agents can acquire the desired trajectory information. By adopting backstepping method and dynamic surface control technique, the distributed fixed-time consensus protocol and appropriate adaptive laws are designed without requiring knowledge of the upper bounds of disturbances. Moreover, the problem of ‘explosion of complexity’ in standard backstepping design is avoided. Under the proposed control protocol, it is shown from the Lyapunov-based analysis that the tracking errors between all followers and the leader can converge to a small neighbourhood of the origin within a fixed time, even though the communication structures among agents dynamically change over time. Finally, a numerical example is carried out to illustrate the effectiveness of the proposed method.

References

    1. 1)
      • 1. Fax, J.A., Murray, R.M.: ‘Information flow and cooperative control of vehicle formations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14651476.
    2. 2)
      • 2. Olfati-Saber, R.: ‘Flocking for multi-agent dynamic systems: algorithms and theory’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 401420.
    3. 3)
      • 3. Moreau, L.: ‘Stability of multiagent systems with time-dependent communication links’, IEEE Trans. Autom. Control, 2005, 50, (2), pp. 169182.
    4. 4)
      • 4. Su, H., Wu, H., Chen, X., et al: ‘Positive edge consensus of complex networks’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2018, 48, (12), pp. 22422250.
    5. 5)
      • 5. Wu, H., Su, H.: ‘Discrete-time positive edge-consensus for undirected and directed nodal networks’, IEEE Trans. Circuits Syst. II, 2018, 65, (2), pp. 221225.
    6. 6)
      • 6. Su, H., Chen, M., Wang, X., et al: ‘Semiglobal observer-based leader-following consensus with input saturation’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28422850.
    7. 7)
      • 7. Li, W.: ‘Distributed output tracking of high-order nonlinear multi-agent systems with unstable linearization’, Syst. Control Lett., 2015, 83, pp. 6773.
    8. 8)
      • 8. Liu, Y., Jia, Y.: ‘Consensus problem of high-order multi-agent systems with external disturbances: an H analysis approach’, Int. J. Robust Nonlinear Control, 2010, 20, (14), pp. 15791593.
    9. 9)
      • 9. Cui, Y., Jia, Y.: ‘L2L consensus control for high-order multi-agent systems with switching topologies and time-varying delays’, IET Control Theory Appl., 2012, 6, (12), pp. 19331940.
    10. 10)
      • 10. Yoo, S.: ‘Synchronised tracking control for multiple strict-feedback non-linear systems under switching network’, IET Control Theory Appl., 2014, 8, (8), pp. 546553.
    11. 11)
      • 11. Hua, C., You, X., Guan, X.: ‘Leader-following consensus for a class of high-order nonlinear multi-agent systems’, Automatica, 2016, 73, pp. 138144.
    12. 12)
      • 12. Bechlioulis, C.P., Rovithakis, G.A.: ‘Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance’, IEEE Trans. Autom. Control, 2017, 62, (1), pp. 123134.
    13. 13)
      • 13. Wang, Q., Fu, J., Wang, J.: ‘Fully distributed containment control of high-order multi-agent systems with nonlinear dynamics’, Syst. Control Lett., 2017, 99, pp. 3339.
    14. 14)
      • 14. Cai, M., Xiang, Z., Guo, J.: ‘Adaptive finite-time consensus protocols for multi-agent systems by using neural networks’, IET Control Theory Appl., 2016, 10, (4), pp. 371380.
    15. 15)
      • 15. Ghasemi, M., Nersesov, S.: ‘Finite-time coordination in multiagent systems using sliding mode control approach’, Automatica, 2014, 50, (4), pp. 12091216.
    16. 16)
      • 16. Yu, S., Long, X.: ‘Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode’, Automatica, 2015, 54, pp. 158165.
    17. 17)
      • 17. Tian, B., Zuo, Z., Wang, H.: ‘Leader-follower fixed-time consensus of multi-agent systems with high-order integrator dynamics’, Int. J. Control, 2017, 90, (7), pp. 14201427.
    18. 18)
      • 18. Fu, J., Wang, J.: ‘Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties’, Syst. Control Lett., 2016, 93, pp. 112.
    19. 19)
      • 19. Zuo, Z.: ‘Nonsingular fixed-time consensus tracking for second-order multi-agent networks’, Automatica, 2015, 54, pp. 305309.
    20. 20)
      • 20. Zhang, B., Jia, Y.: ‘Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements’, Nonlinear Dyn., 2015, 82, (4), pp. 16831690.
    21. 21)
      • 21. Zuo, Z., Tie, L.: ‘Distributed robust finite-time nonlinear consensus protocols for multi-agent systems’, Int. J. Syst. Sci., 2016, 47, (6), pp. 13661375.
    22. 22)
      • 22. Wang, Q., Wang, Y., Sun, C.: ‘Fixed-time consensus of multi-agent systems with directed and intermittent communications’, Asian J. Control, 2017, 19, (1), pp. 95105.
    23. 23)
      • 23. Cao, Y., Ren, W.: ‘Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics’, Automatica, 2014, 50, (10), pp. 26482656.
    24. 24)
      • 24. Li, C., Qu, Z.: ‘Distributed finite-time consensus of nonlinear systems under switching topologies’, Automatica, 2014, 50, (6), pp. 16261631.
    25. 25)
      • 25. Cai, M., Xiang, Z.: ‘Adaptive finite-time consensus tracking for multiple uncertain mechanical systems with input saturation’, Int. J. Robust Nonlinear Control, 2017, 27, (9), pp. 16531676.
    26. 26)
      • 26. Wang, F., Chen, X., He, Y., et al: ‘Finite-time consensus problem for second-order multi-agent systems under switching topologies’, Asian J. Control, 2017, 19, (5), pp. 17561766.
    27. 27)
      • 27. Ning, B., Jin, J., Zheng, J.: ‘Fixed-time consensus for multi-agent systems with discontinuous inherent dynamics over switching topology’, Int. J. Syst. Sci., 2017, 48, (10), pp. 20232032.
    28. 28)
      • 28. Swaroop, D., Hedrick, J., Yip, P., et al: ‘Dynamic surface control for a class of nonlinear systems’, IEEE Trans. Autom. Control, 2000, 45, (10), pp. 18931899.
    29. 29)
      • 29. Shi, X., Lu, J., Li, Z., et al: ‘Robust adaptive distributed dynamic surface consensus tracking control for nonlinear multi-agent systems with dynamic uncertainties’, J. Franklin Inst., 2016, 353, (17), pp. 47854802.
    30. 30)
      • 30. Zhang, L., Hua, C., Guan, X.: ‘Distributed output feedback consensus tracking prescribed performance control for a class of non-linear multi-agent systems with unknown disturbances’, IET Control Theory Appl., 2016, 10, (8), pp. 877883.
    31. 31)
      • 31. Wang, C., Guo, L.: ‘Adaptive cooperative tracking control for a class of nonlinear time-varying multi-agent systems’, J. Franklin Inst., 2017, 354, (15), pp. 67666782.
    32. 32)
      • 32. Polyakov, A.: ‘Nonlinear feedback design for fixed-time stabilization of linear control systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21062110.
    33. 33)
      • 33. Zuo, Z., Wang, C.: ‘Adaptive trajectory tracking control of output constrained multi-rotors systems’, IET Control Theory Appl., 2014, 8, (13), pp. 11631174.
    34. 34)
      • 34. Jiang, B., Hu, Q., Friswell, M.I.: ‘Fixed-time attitude control for rigid spacecraft with actuator saturation and faults’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 18921898.
    35. 35)
      • 35. Li, T., Wang, D., Feng, G., et al: ‘A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems’, IEEE Trans. Syst. Man Cybern., B Cybern., 2010, 40, (3), pp. 915927.
    36. 36)
      • 36. Yang, Z.: ‘Robust control of nonlinear semi-strict feedback systems using finite-time disturbance observers’, Int. J. Robust Nonlinear Control, 2017, 27, (17), pp. 35823603.
    37. 37)
      • 37. Lu, M., Liu, L.: ‘Robust output consensus of networked heterogeneous nonlinear systems by distributed output regulation’, Automatica, 2018, 94, pp. 186193.
    38. 38)
      • 38. Su, H., Chen, M., Lam, J., et al: ‘Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback’, IEEE Trans. Circuits Syst. I, 2013, 60, (7), pp. 18811889.
    39. 39)
      • 39. Su, H., Chen, M.: ‘Multi-agent containment control with input saturation on switching topologies’, IET Control Theory Appl., 2015, 9, (3), pp. 399409.
    40. 40)
      • 40. Cong, Y., Feng, Z., Song, H., et al: ‘Containment control of singular heterogeneous multi-agent systems’, J. Franklin Inst., 2018, 355, (11), pp. 46294643.
    41. 41)
      • 41. Liu, T., Huang, J.: ‘Cooperative output regulation for a class of nonlinear multi-agent systems with unknown control directions subject to switching networks’, IEEE Trans. Autom. Control, 2018, 63, (3), pp. 783790.
    42. 42)
      • 42. Wang, S., Huang, J.: ‘Cooperative output regulation of singular multi-agent systems under switching network by standard reduction’, IEEE Trans. Circuits Syst. I, 2018, 65, (4), pp. 13771385.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5892
Loading

Related content

content/journals/10.1049/iet-cta.2018.5892
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address