access icon free Delayed-impulsive control for difference systems with actuator saturation and its synchronisation application

This study focuses on the problem of time-delayed impulsive control with actuator saturation for discrete-time dynamical systems. By establishing a delayed-impulsive difference inequality, combining with convex analysis and inequality techniques, some sufficient conditions are obtained to ensure exponential stability for discrete-time dynamical systems via time-delayed impulsive controller with actuator saturation. And those results are also used in the problem of synchronisation of the discrete-time complex networks. The designed controller admits the existence of some transmission delays in impulsive feedback law, and the control input variables are required to stay within an availability zone. Several numerical simulations are also given to demonstrate the effectiveness of the proposed results.

Inspec keywords: synchronisation; Lyapunov methods; feedback; asymptotic stability; control system synthesis; delays; discrete time systems; nonlinear control systems; complex networks

Other keywords: impulsive feedback law; transmission delays; difference systems; control input variables; discrete-time dynamical systems; inequality techniques; designed controller; convex analysis; discrete-time complex networks; time-delayed impulsive control; actuator saturation; delayed-impulsive difference inequality; time-delayed impulsive controller; delayed-impulsive control

Subjects: Algebra; Distributed parameter control systems; Nonlinear control systems; Control system analysis and synthesis methods; Discrete control systems; Stability in control theory

References

    1. 1)
      • 5. Zhang, Y.: ‘Global exponential stability of delay difference equations with delayed impulses’, Math. Comput. Simul., 2017, 132, pp. 183194.
    2. 2)
      • 13. Bouzerdoum, A., Pattison, T.R.: ‘Neural network for quadratic optimization with bound constraints’, IEEE Trans. Neural Netw., 1993, 4, (2), pp. 293304.
    3. 3)
      • 30. Ai, Z., Chen, C.: ‘Asymptotic stability analysis and design of nonlinear impulsive control systems’, Nonlinear Anal., Hybrid Syst., 2017, 24, pp. 244252.
    4. 4)
      • 32. Yang, X., Li, C., Huang, T., et al: ‘Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses’, Appl. Math. Comput., 2017, 293, pp. 416422.
    5. 5)
      • 14. Hu, T., Lin, Z.: ‘Control systems with actuator saturation: analysis and design’ (Birkhäuser, Boston, 2001).
    6. 6)
      • 37. Zhang, W., Tang, Y., Wu, X., et al: ‘Synchronization of nonlinear dynamical networks with heterogeneous impulses’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (4), pp. 12201228.
    7. 7)
      • 10. Zhang, W., Li, C., Huang, T., et al: ‘Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (12), pp. 33083313.
    8. 8)
      • 22. Li, L., Li, C., Li, H.: ‘Fully state constraint impulsive control for non-autonomous delayed nonlinear dynamic systems’, Nonlinear Anal. Hybrid Syst., 2018, 29, pp. 383394.
    9. 9)
      • 3. Su, X., Liu, X., Shi, P., et al: ‘Sliding mode control of discrete-time switched systems with repeated scalar nonlinearities’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 46044610.
    10. 10)
      • 12. Huang, T., Li, C., Yu, W., et al: ‘Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback’, Nonlinearity, 2009, 22, pp. 569584.
    11. 11)
      • 29. Xu, L., Li, J., Ge, S.: ‘Impulsive stabilization of fractional differential systems’, ISA Trans., 2017, 70, pp. 125131.
    12. 12)
      • 2. Mohamad, S., Naim, A.G.: ‘Discrete-time analogues of integrodifferential equations modelling bidirectional neural networks’, J. Comput. Appl. Math., 2002, 138, (1), pp. 120.
    13. 13)
      • 8. Liu, X., Zhang, K.: ‘Impulsive control for stabilisation of discrete delay systems and synchronisation of discrete delay dynamical networks’, IET Control Theory Appl., 2014, 8, (13), pp. 11851195.
    14. 14)
      • 20. Li, C., Yu, X., Huang, T., et al: ‘A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 308321.
    15. 15)
      • 34. Liu, Y., Wang, Z., Liang, J., et al: ‘Synchronization and state estimation for discrete-time complex networks with distributed delays’, IEEE Trans. Syst. Man Cybern. B, 2008, 38, (5), pp. 13141325.
    16. 16)
      • 28. Li, X.: ‘New results on global exponential stabilization of impulsive functional differential equations with infinite delays or finite delays’, Nonlinear Anal., Real World Appl., 2010, 11, pp. 41944201.
    17. 17)
      • 9. Li, X., Song, S.: ‘Stabilization of delay systems: delay-dependent impulsive control’, IEEE Trans. Autom. Control, 2017, 62, (1), pp. 406411.
    18. 18)
      • 27. Homer, T., Mhaskar, P.: ‘Constrained control Lyapunov function-based control of nonlinear systems’, Syst. Control Lett., 2017, 110, pp. 5561.
    19. 19)
      • 23. Li, L., Li, C., Li, H.: ‘An analysis and design for time-varying structures dynamical networks via state constraint impulsive control’, Int. J. Control, 2018, Doi: 10.1080/00207179.2018.1459861.
    20. 20)
      • 19. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full-state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    21. 21)
      • 38. Yang, S., Li, C., Huang, T.: ‘State-dependent impulsive synchronisation of complex dynamical networks with non-linear coupling’, IET Control Theory Appl., 2018, 12, (9), pp. 11891200.
    22. 22)
      • 33. Wei, L., Chen, W.: ‘Global exponential stability of a class of impulsive neural networks with unstable continuous and discrete dynamics’, Neurocomputing, 2015, 147, pp. 225234.
    23. 23)
      • 26. Liu, Y., Lu, S., Tong, S., et al: ‘Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints’, Automatica, 2018, 87, pp. 8393.
    24. 24)
      • 35. Huang, T., Li, C., Duan, S.: , et alRobust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, pp. 866875.
    25. 25)
      • 15. Hou, L., Michel, A.N.: ‘Asymptotic stability of systems with saturation constraints’, IEEE Trans. Autom. Control, 1998, 43, (8), pp. 11481154.
    26. 26)
      • 36. Li, Z., Fang, J., Tang, Y., et al: ‘Consensus of linear discrete-time multi-agent systems: A low-gain distributed impulsive strategy’, IEEE Trans. Syst. Man Cybern., Syst., 2017, doi:10.1109/TSMC.2017.2692259.
    27. 27)
      • 31. Li, C., Zhou, Y., Wang, H., et al: ‘Stability of nonlinear systems with variable-time impulses: B-equivalence method’, Int. J. Control Autom. Syst., 2017, 15, (5), pp. 20722079.
    28. 28)
      • 11. Khadra, A., Liu, X., Shen, X.: ‘Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 923928.
    29. 29)
      • 40. Zhang, W., Tang, Y., Miao, Q., et al: ‘Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (8), pp. 13161326.
    30. 30)
      • 39. Li, H., Li, C., Huang, T., et al: ‘Fixed-time stability and stabilization of impulsive dynamical systems’, J. Franklin Inst., 354, 2017, 18, pp. 86268644.
    31. 31)
      • 1. Liu, D., Michel, A.N.: ‘Stability analysis of systems with partial state saturation nonlinearities’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 1996, 43, (3), pp. 230232.
    32. 32)
      • 6. Zhou, Y., Li, C., Chen, L., et al: ‘Global exponential stability of memristive Cohen–Grossberg neural networks with mixed delays and impulse time window’, Neurocomputing, 2018, 275, pp. 23842391.
    33. 33)
      • 25. Hu, T., Lin, Z.: ‘A complete stability analysis of planar discrete-time linear systems under saturation’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2001, 48, (6), pp. 710725.
    34. 34)
      • 16. Johnson, E., Calise, A.: ‘Neural network adaptive control of systems with input saturation’. Proc. of the American Control Conf., Vancouver, Canada, 2001, vol. 5, pp. 35273532.
    35. 35)
      • 21. Li, Z., Fang, J., Huang, T., et al: ‘Impulsive synchronization of discrete-time networked oscillators with partial input saturation’, Inf. Sci., 2018, 422, pp. 531541.
    36. 36)
      • 18. Tee, K., Ge, S., Tay, E.: ‘Barrier Lyapunov functions for the control of output-constrained nonlinear systems’, Automatica, 2009, 45, (4), pp. 918927.
    37. 37)
      • 17. Liu, Y., Tong, S.: ‘Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems’, Automatica, 2017, 76, pp. 143152.
    38. 38)
      • 4. Hei, X., Wu, R.: ‘Finite-time stability of impulsive fractional-order systems with time-delay’, Appl. Math. Model., 2016, 40, pp. 42854290.
    39. 39)
      • 7. Zhang, Y.: ‘Exponential stability of impulsive discrete systems with time delays’, Appl. Math. Lett., 2012, 25, (12), pp. 22902297.
    40. 40)
      • 24. Michel, A.N., Si, J., Yen, G.: ‘Analysis and synthesis of a class of discrete-time neural networks described on hypercubes’, IEEE Trans. Neural Netw., 1991, 2, (1), pp. 3246.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5888
Loading

Related content

content/journals/10.1049/iet-cta.2018.5888
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading