Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Non-linear-disturbance-observer-enhanced MPC for motion control systems with multiple disturbances

This study addresses the optimised tracking problem for motion control systems with multiple disturbances by a non-linear-disturbance-observer-enhanced continuous-time model predictive control (MPC) method. The core is to predict the future tracking error and desired control input (including the lumped effects of disturbances/uncertainties) in the receding-horizon by a higher-order sliding mode disturbance observer, which is designed based upon a rough nominal system. Different from the direct compensation approach in most existing composite MPC methods, disturbance estimates are taken full advantage in the optimisation. The explicit relationship between asymptotic stability and weights in the performance index is provided. Simulations on position control of the robot arm system and experiments on speed regulation of the permanent magnet synchronous motor servo system are both presented to demonstrate the workability.

References

    1. 1)
      • 28. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9-10), pp. 924941.
    2. 2)
      • 35. Yang, J., Chen, W.H., Li, S., et al: ‘Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—A survey’, IEEE Trans. Ind. Electron., 2016, 64, (4), pp. 32733285.
    3. 3)
      • 38. Niu, X., Zhang, C., Li, H.: ‘Active disturbance attenuation control for permanent magnet synchronous motor via feedback domination and disturbance observer’, IET Control Theory Applic., 2017, 11, (6), pp. 807815.
    4. 4)
      • 40. Van-Loan, C.: ‘The sensitivity of the matrix exponential’, SIAM J. Numer. Anal., 1977, 14, (6), pp. 971981.
    5. 5)
      • 4. Pourkargar, D.B., Almansoori, A., Daoutidis, P.: ‘Impact of decomposition on distributed model predictive control: a process network case study’, Ind. Eng. Chem. Res., 2017, 56, (34), pp. 96069616.
    6. 6)
      • 23. Errouissi, R., Ouhrouche, M., Chen, W.H., et al: ‘Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 28492858.
    7. 7)
      • 17. Ohnishi, K., Shibata, M., Murakami, T.: ‘Motion control for advanced mechatronics’, IEEE/ASME Trans. Mechatronics, 1996, 1, (1), pp. 5667.
    8. 8)
      • 39. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Springer, New York, USA, 2014).
    9. 9)
      • 15. Yang, H., Guo, M., Xia, Y., et al: ‘Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints’, IET Control Theory Applic., 2017, 12, (2), pp. 206214.
    10. 10)
      • 12. Wang, L.: ‘Model predictive control system design and implementation using MATLAB®’ (Springer Science & Business Media, London, UK, 2009).
    11. 11)
      • 34. Yan, Y., Zhang, C., Narayan, A., et al: ‘Generalized dynamic predictive control for nonparametric uncertain systems with application to series elastic actuators’, IEEE Trans. Ind. Inf., 2018, 14, (11), pp. 48294840.
    12. 12)
      • 18. Han, J.: ‘From PID to active disturbance rejection control’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 900906.
    13. 13)
      • 24. Pannocchia, G., Bemporad, A.: ‘Combined design of disturbance model and observer for offset-free model predictive control’, IEEE Trans. Autom. Control, 2007, 52, (6), pp. 10481053.
    14. 14)
      • 26. Yang, J., Zheng, W.X., Li, S., et al: ‘Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed systems via a disturbance observer’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58075816.
    15. 15)
      • 21. Liu, C., Chen, W.H., Andrews, J.: ‘Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers’, Control Eng. Pract., 2012, 20, (3), pp. 258268.
    16. 16)
      • 29. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: ‘Optimal control of nonlinear systems: A predictive control approach’, Automatica, 2003, 39, (4), pp. 633641.
    17. 17)
      • 22. Xia, C., Wang, M., Song, Z., et al: ‘Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 459471.
    18. 18)
      • 5. Pourkargar, D.B., Almansoori, A., Daoutidis, P.: ‘Comprehensive study of decomposition effects on distributed output tracking of an integrated process over a wide operating range’, Chem. Eng. Res. Des., 2018, 134, pp. 553563.
    19. 19)
      • 10. Maeder, U., Borrelli, F., Morari, M.: ‘Linear offset-free model predictive control’, Automatica, 2009, 45, (10), pp. 22142222.
    20. 20)
      • 20. Yan, Y., Zhang, C., Liu, C., et al: ‘Disturbance rejection for nonlinear uncertain systems with output measurement errors: application to a helicopter model’, IEEE Trans. Ind. Inf., 2019, DOI: 10.1109/TII.2019.2910841.
    21. 21)
      • 14. Alexis, K., Nikolakopoulos, G., Tzes, A.: ‘Model predictive quadrotor control: attitude, altitude and position experimental studies’, IET Control Theory Applic., 2012, 6, (12), pp. 18121827.
    22. 22)
      • 3. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    23. 23)
      • 36. Chen, W.H.: ‘Closed-form nonlinear MPC for multivariable nonlinear systems with different relative degree’. Proc. American Control Conf., Denver, CO, USA, 2003, pp. 48874892.
    24. 24)
      • 31. Sariyildiz, E., Sekiguchi, H., Nozaki, T., et al: ‘A stability analysis for the acceleration-based robust position control of robot manipulators via disturbance observer’, IEEE/ASME Trans. Mechatronics, 2018, 23, (5), pp. 23692378.
    25. 25)
      • 32. Sariyildiz, E., Chen, G., Yu, H.: ‘A unified robust motion controller design for series elastic actuators’, IEEE/ASME Trans. Mechatronics, 2017, 22, (5), pp. 22292240.
    26. 26)
      • 11. Morari, M., Maeder, U.: ‘Nonlinear offset-free model predictive control’, Automatica, 2012, 48, (9), pp. 20592067.
    27. 27)
      • 25. Chen, W.H., Ballance, D.J., Gawthrop, P.J., et al: ‘Nonlinear PID predictive controller’, IEE Proc., Control Theory Appl., 1999, 146, (6), pp. 603611.
    28. 28)
      • 7. Kong, L., Yuan, J.: ‘Disturbance-observer-based fuzzy model predictive control for nonlinear processes with disturbances and input constraints’, ISA Trans., 2019, 90, pp. 7488.
    29. 29)
      • 9. Muske, K.R., Badgwell, T.A.: ‘Disturbance modeling for offset-free linear model predictive control’, J. Process Control, 2002, 12, (5), pp. 617632.
    30. 30)
      • 37. Isidori, A.: ‘Nonlinear control systems’ (Springer Science & Business Media, London, UK, 2013).
    31. 31)
      • 1. Richalet, J.: ‘Industrial applications of model based predictive control’, Automatica, 1993, 29, (5), pp. 12511274.
    32. 32)
      • 8. Hermansson, A.W., Syafiie, S.: ‘An offset-free MPC formulation for nonlinear systems using adaptive integral controller’, ISA Trans., 2019, 91, pp. 6677.
    33. 33)
      • 13. Zhao, H., Ren, B., Chen, H., et al: ‘Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition’, IET Control Theory Applic., 2015, 9, (18), pp. 26882696.
    34. 34)
      • 27. Yan, Y., Yang, J., Sun, Z., et al: ‘Robust speed regulation for PMSM servo system with multiple sources of disturbances via an augmented disturbance observer’, IEEE/ASME Trans. Mechatronics, 2018, 23, (2), pp. 769780.
    35. 35)
      • 19. Chen, W.H., Yang, J., Guo, L., et al: ‘Disturbance-observer-based control and related methods—an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10831095.
    36. 36)
      • 30. Yu, H., Huang, S., Chen, G., et al: ‘Human–robot interaction control of rehabilitation robots with series elastic actuators’, IEEE Trans. Robot., 2015, 31, (5), pp. 10891100.
    37. 37)
      • 6. Tang, W., Pourkargar, D.B., Daoutidis, P.: ‘Relative time-averaged gain array (RTAGA) for distributed control-oriented network decomposition’, AIChE J., 2018, 64, (5), pp. 16821690.
    38. 38)
      • 33. Siller-Alcalá, I.I.: ‘Nonlinear continuous-time generalised predictive control’ (University of Glasgow, Glasgow, UK, 1998).
    39. 39)
      • 16. Ang, K.H., Chong, G., Li, Y.: ‘PID control system analysis, design, and technology’, IEEE Trans. Control Syst. Technol., 2005, 13, (4), pp. 559576.
    40. 40)
      • 2. Morari, M., Lee, J.H.: ‘Model predictive control: past, present and future’, Comput. Chem. Eng., 1999, 23, (4–5), pp. 667682.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5821
Loading

Related content

content/journals/10.1049/iet-cta.2018.5821
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address