Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dynamic infinity-norm constrained control allocation for attitude tracking control of overactuated combined spacecraft

In this study, a dynamic (infinity-norm) constrained control allocation scheme is designed for attitude tracking control of combined spacecraft with inertia uncertainties and external disturbances. A disturbance-observer-based constrained backstepping control law is developed to generate the control command signals considering non-symmetric constraints on control input, where the lumped disturbance containing inertia uncertainties and external disturbances is compensated by the output of stable non-linear disturbance observer. The control scheme can guarantee that the attitude and angular velocity tracking error converge to small neighbourhood of zero by appropriately tuning the control parameters. With the consideration of physical amplitude and rate constraints on actuators, the dynamic constrained control allocation problem is solved by linear programming technique. Numerical examples demonstrate the effectiveness of the proposed disturbance-observer-based constrained backstepping control method and the dynamic constrained control allocation algorithm.

References

    1. 1)
      • 40. Ruiter, A.H.J.D., Damaren, C.J., Forbes, J.R.: ‘Spacecraft dynamics and control: an introduction’ (Hoboken, New Jersey, 2013, 1st edn.).
    2. 2)
      • 27. Lu, K., Xia, Y., Fu, M.: ‘Controller design for rigid spacecraft attitude tracking with actuator saturation’, Inf. Sci., 2013, 220, pp. 343366.
    3. 3)
      • 26. Hu, Q., Li, B., Qi, J.: ‘Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation’, Aerosp. Sci. Technol., 2014, 39, pp. 1321.
    4. 4)
      • 29. Chen, H., Song, S., Zhu, Z.: ‘Robust finite-time attitude tracking control of rigid spacecraft under actuator saturation’, Int. J. Control Autom., 2018, 16, (1), pp. 115.
    5. 5)
      • 14. Soylu, S., Buckham, B., Podhorodeski, R.: ‘Robust control of underwater vehicles with fault-tolerant infinity-norm thruster force allocation’. Proc. of the OCEANS 2007 MTS/IEEE Conf. and Exhibition, Vancouver, Canada, September 2007, pp. 110.
    6. 6)
      • 3. Bandyopadhyay, S., Chung, S., Hadaegh, F.: ‘Nonlinear attitude control of spacecraft with a large captured object’, J. Guid. Control. Dyn., 2016, 39, (4), pp. 7540769.
    7. 7)
      • 9. Shen, Q., Wang, D., Zhu, S., et al: ‘Inertia-free fault-tolerant spacecraft attitude tracking using control allocation’, Automatica, 2015, 62, pp. 114121.
    8. 8)
      • 1. Flores-Abad, A., Ma, O., Pham, K., et al: ‘A review of space robotics technologies for on-orbit servicing’, Prog. Aerosp. Sci., 2014, 68, pp. 126.
    9. 9)
      • 12. Soylu, S., Buckham, B.J., Podhorodeski, R.P.: ‘A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation’, Ocean. Eng., 2008, 35, (16), pp. 16471659.
    10. 10)
      • 2. Luo, J., Wei, C., Dai, H., et al: ‘Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance’, ISA Trans., 2018, 74, pp. 2844.
    11. 11)
      • 32. Li, M., Hou, M., Yin, C.: ‘Constrained input to state controller design for spacecraft attitude stabilization’. American Control Conf. (ACC), Boston, America, July 2016, pp. 58625866.
    12. 12)
      • 18. Tohidi, S.S., Khaki, A., Buzorgnia, D.: ‘Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space’, Int J. Robust Nonlinear, 2016, 26, (16), pp. 35413557.
    13. 13)
      • 39. Huo, B., Xia, Y., Yin, L., et al: ‘Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft’, IEEE Trans. Syst. Man Cybern., 2017, 47, (8), pp. 18981908.
    14. 14)
      • 25. Zou, A.M., Ruiter, A.H.J.D., Kumar, K.D.: ‘Finite-time attitude tracking control for rigid spacecraft with control input constraints’, IET Control Theory Applic., 2017, 11, (7), pp. 931940.
    15. 15)
      • 31. Li, M., Hou, M., Yin, C.: ‘Constrained dual-loop attitude control design for spacecraft’, Aerosp. Sci. Technol., 2016, 55, pp. 170176.
    16. 16)
      • 10. Naskar, A.K., Patra, S., Sen, S.: ‘New control allocation algorithms in fixed point framework for overactuated systems with actuator saturation’, Int. J. Control, 2016, 90, (2), pp. 348356.
    17. 17)
      • 13. Bolender, M.A., Doman, D.B.: ‘Nonlinear control allocation using piecewise linear functions’, J. Guid. Control. Dyn., 2004, 27, (6), pp. 10171027.
    18. 18)
      • 28. Zhang, J., Ye, D., Sun, Z., et al: ‘Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking manoeuvre with actuator saturation and misalignment’, Acta Astronaut., 2018, 143, pp. 221233.
    19. 19)
      • 4. Huang, P., Wang, M., Meng, Z., et al: ‘Attitude takeover control for post-capture of target spacecraft using space robot’, Aerosp. Sci. Technol., 2016, 51, pp. 171180.
    20. 20)
      • 22. Almutairi, S.H., Aouf, N.: ‘Reconfigurable dynamic control allocation for aircraft with actuator failures’, Aeronaut. J., 2017, 121, (1237), pp. 341371.
    21. 21)
      • 11. Shen, Q., Wang, D., Zhu, S., et al: ‘Robust control allocation for space attitude tracking under actuator faults’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 10681075.
    22. 22)
      • 35. Chen, W., Yang, J., Guo, L., et al: ‘Disturbance-observer-based control and related methods–an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10831095.
    23. 23)
      • 38. Guo, L., Chen, W.: ‘Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach’, Int. J. Robust Nonlinear, 2005, 15, (3), pp. 109112.
    24. 24)
      • 23. Hu, Q., Shao, X., Guo, L.: ‘Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance’, IEEE-ASME Trans. Mech., 2018, 23, (1), pp. 331341.
    25. 25)
      • 5. Jia, Y., Misra, A.: ‘Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes’, Acta Astronaut., 2017, 137, pp. 287301.
    26. 26)
      • 43. Chovancova, A., Fico, T., Hubinsky, P., et al: ‘Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator’, Robot. Auton. Syst., 2016, 79, pp. 8798.
    27. 27)
      • 45. Junkins, J.L., Schaub, H.: ‘Analytical mechanics of space systems’ (AIAA Education, Reston, 2003, 2nd edn.).
    28. 28)
      • 16. Naskar, A.K., Patra, S., Sen, S.: ‘A control theoretic approach for solving underdetermined problems and its application to control allocation’, Trans. ASME J. Dyn. Syst., 2016, 138, (4), p. 044501.
    29. 29)
      • 19. Haerkegard, O.: ‘Dynamic control allocation using constrained quadratic programming’, J. Guid. Control Dyn., 2004, 27, (6), pp. 10281034.
    30. 30)
      • 30. Yin, C., Hou, M., Li, M.: ‘Finite-time attitude controller design via dual-loop control strategy’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2016, 232, (2), pp. 215226.
    31. 31)
      • 33. Sonneveldt, L., Chu, Q., Mulder, J.A.: ‘Nonlinear flight control design using constrained adaptive backstepping’, J. Guid. Control Dyn., 2007, 30, (2), pp. 322336.
    32. 32)
      • 21. Zhang, A., Hu, Q., Huo, X.: ‘Dynamic control allocation for spacecraft attitude stabilization with actuator uncertainty’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2013, 228, (8), pp. 13361347.
    33. 33)
      • 24. Zou, A.M., Kumar, K.D., Ruiter, A.H.J.D.: ‘Robust attitude tracking control of spacecraft under control input magnitude and rate saturations’, Int. J. Robust Nonlinear, 2016, 26, (4), pp. 799815.
    34. 34)
      • 44. An, H., Liu, J., Wang, C., et al: ‘Disturbance observer-based antiwindup control for airbreathing hypersonic vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 30383049.
    35. 35)
      • 8. Li, B., Hu, Q., Qi, J.: ‘Null-space-based optimal control reallocation for spacecraft stabilization under input saturation’, Int. J. Adapt. Control, 2015, 29, (6), pp. 705724.
    36. 36)
      • 37. Sun, L., Zheng, Z.: ‘Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement and uncertainty’, IEEE Trans. Ind. Electron., 2017, 64, (10), pp. 79948002.
    37. 37)
      • 34. Farrell, J., Sharma, M., Polycarpou, M.: ‘Backstepping-based flight control with adaptive function approximation’, J. Guid. Control Dyn., 2005, 28, (6), pp. 10891102.
    38. 38)
      • 36. Yang, J., Chen, W., Ding, Z.: ‘Disturbance observers and applications’, Trans. Inst. Meas. Control, 2016, 38, (6), pp. 621624.
    39. 39)
      • 15. Doman, D.B., Gamble, B.J., Ngo, A.D.: ‘Quantized control allocation of reaction control jets and aerodynamic control surfaces’, J. Guid. Control Dyn., 2009, 32, (1), pp. 1324.
    40. 40)
      • 17. Almeida, F.A.D.: ‘Robust off-line control allocation’, Aerosp. Sci. Technol., 2016, 52, pp. 19.
    41. 41)
      • 42. Chen, M., Ren, B., Wu, Q., et al: ‘Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer’, Sci. China, 2015, 58, (7), pp. 0702020107020212.
    42. 42)
      • 20. Guo, C., Liang, X.: ‘Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2014, 229, (9), pp. 15591574.
    43. 43)
      • 6. Huang, P., Wang, M., Meng, Z., et al: ‘Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators’, J. Franklin Inst., 2016, 353, (9), pp. 19852008.
    44. 44)
      • 7. Chen, M.: ‘Constrained control allocation for overactuated aircraft using a neurodynamic model’, IEEE Trans. Syst. Man Cybern., 2016, 46, (12), pp. 16301641.
    45. 45)
      • 41. Gui, H., Vukovich, G.: ‘Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty’, J. Franklin Inst., 2015, 352, (12), pp. 58325852.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5707
Loading

Related content

content/journals/10.1049/iet-cta.2018.5707
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address