http://iet.metastore.ingenta.com
1887

Dynamic infinity-norm constrained control allocation for attitude tracking control of overactuated combined spacecraft

Dynamic infinity-norm constrained control allocation for attitude tracking control of overactuated combined spacecraft

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a dynamic (infinity-norm) constrained control allocation scheme is designed for attitude tracking control of combined spacecraft with inertia uncertainties and external disturbances. A disturbance-observer-based constrained backstepping control law is developed to generate the control command signals considering non-symmetric constraints on control input, where the lumped disturbance containing inertia uncertainties and external disturbances is compensated by the output of stable non-linear disturbance observer. The control scheme can guarantee that the attitude and angular velocity tracking error converge to small neighbourhood of zero by appropriately tuning the control parameters. With the consideration of physical amplitude and rate constraints on actuators, the dynamic constrained control allocation problem is solved by linear programming technique. Numerical examples demonstrate the effectiveness of the proposed disturbance-observer-based constrained backstepping control method and the dynamic constrained control allocation algorithm.

References

    1. 1)
      • 1. Flores-Abad, A., Ma, O., Pham, K., et al: ‘A review of space robotics technologies for on-orbit servicing’, Prog. Aerosp. Sci., 2014, 68, pp. 126.
    2. 2)
      • 2. Luo, J., Wei, C., Dai, H., et al: ‘Robust inertia-free attitude takeover control of postcapture combined spacecraft with guaranteed prescribed performance’, ISA Trans., 2018, 74, pp. 2844.
    3. 3)
      • 3. Bandyopadhyay, S., Chung, S., Hadaegh, F.: ‘Nonlinear attitude control of spacecraft with a large captured object’, J. Guid. Control. Dyn., 2016, 39, (4), pp. 7540769.
    4. 4)
      • 4. Huang, P., Wang, M., Meng, Z., et al: ‘Attitude takeover control for post-capture of target spacecraft using space robot’, Aerosp. Sci. Technol., 2016, 51, pp. 171180.
    5. 5)
      • 5. Jia, Y., Misra, A.: ‘Robust trajectory tracking control of a dual-arm space robot actuated by control moment gyroscopes’, Acta Astronaut., 2017, 137, pp. 287301.
    6. 6)
      • 6. Huang, P., Wang, M., Meng, Z., et al: ‘Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators’, J. Franklin Inst., 2016, 353, (9), pp. 19852008.
    7. 7)
      • 7. Chen, M.: ‘Constrained control allocation for overactuated aircraft using a neurodynamic model’, IEEE Trans. Syst. Man Cybern., 2016, 46, (12), pp. 16301641.
    8. 8)
      • 8. Li, B., Hu, Q., Qi, J.: ‘Null-space-based optimal control reallocation for spacecraft stabilization under input saturation’, Int. J. Adapt. Control, 2015, 29, (6), pp. 705724.
    9. 9)
      • 9. Shen, Q., Wang, D., Zhu, S., et al: ‘Inertia-free fault-tolerant spacecraft attitude tracking using control allocation’, Automatica, 2015, 62, pp. 114121.
    10. 10)
      • 10. Naskar, A.K., Patra, S., Sen, S.: ‘New control allocation algorithms in fixed point framework for overactuated systems with actuator saturation’, Int. J. Control, 2016, 90, (2), pp. 348356.
    11. 11)
      • 11. Shen, Q., Wang, D., Zhu, S., et al: ‘Robust control allocation for space attitude tracking under actuator faults’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 10681075.
    12. 12)
      • 12. Soylu, S., Buckham, B.J., Podhorodeski, R.P.: ‘A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation’, Ocean. Eng., 2008, 35, (16), pp. 16471659.
    13. 13)
      • 13. Bolender, M.A., Doman, D.B.: ‘Nonlinear control allocation using piecewise linear functions’, J. Guid. Control. Dyn., 2004, 27, (6), pp. 10171027.
    14. 14)
      • 14. Soylu, S., Buckham, B., Podhorodeski, R.: ‘Robust control of underwater vehicles with fault-tolerant infinity-norm thruster force allocation’. Proc. of the OCEANS 2007 MTS/IEEE Conf. and Exhibition, Vancouver, Canada, September 2007, pp. 110.
    15. 15)
      • 15. Doman, D.B., Gamble, B.J., Ngo, A.D.: ‘Quantized control allocation of reaction control jets and aerodynamic control surfaces’, J. Guid. Control Dyn., 2009, 32, (1), pp. 1324.
    16. 16)
      • 16. Naskar, A.K., Patra, S., Sen, S.: ‘A control theoretic approach for solving underdetermined problems and its application to control allocation’, Trans. ASME J. Dyn. Syst., 2016, 138, (4), p. 044501.
    17. 17)
      • 17. Almeida, F.A.D.: ‘Robust off-line control allocation’, Aerosp. Sci. Technol., 2016, 52, pp. 19.
    18. 18)
      • 18. Tohidi, S.S., Khaki, A., Buzorgnia, D.: ‘Fault tolerant control design using adaptive control allocation based on the pseudo inverse along the null space’, Int J. Robust Nonlinear, 2016, 26, (16), pp. 35413557.
    19. 19)
      • 19. Haerkegard, O.: ‘Dynamic control allocation using constrained quadratic programming’, J. Guid. Control Dyn., 2004, 27, (6), pp. 10281034.
    20. 20)
      • 20. Guo, C., Liang, X.: ‘Integrated guidance and control based on block backstepping sliding mode and dynamic control allocation’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2014, 229, (9), pp. 15591574.
    21. 21)
      • 21. Zhang, A., Hu, Q., Huo, X.: ‘Dynamic control allocation for spacecraft attitude stabilization with actuator uncertainty’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2013, 228, (8), pp. 13361347.
    22. 22)
      • 22. Almutairi, S.H., Aouf, N.: ‘Reconfigurable dynamic control allocation for aircraft with actuator failures’, Aeronaut. J., 2017, 121, (1237), pp. 341371.
    23. 23)
      • 23. Hu, Q., Shao, X., Guo, L.: ‘Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance’, IEEE-ASME Trans. Mech., 2018, 23, (1), pp. 331341.
    24. 24)
      • 24. Zou, A.M., Kumar, K.D., Ruiter, A.H.J.D.: ‘Robust attitude tracking control of spacecraft under control input magnitude and rate saturations’, Int. J. Robust Nonlinear, 2016, 26, (4), pp. 799815.
    25. 25)
      • 25. Zou, A.M., Ruiter, A.H.J.D., Kumar, K.D.: ‘Finite-time attitude tracking control for rigid spacecraft with control input constraints’, IET Control Theory Applic., 2017, 11, (7), pp. 931940.
    26. 26)
      • 26. Hu, Q., Li, B., Qi, J.: ‘Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation’, Aerosp. Sci. Technol., 2014, 39, pp. 1321.
    27. 27)
      • 27. Lu, K., Xia, Y., Fu, M.: ‘Controller design for rigid spacecraft attitude tracking with actuator saturation’, Inf. Sci., 2013, 220, pp. 343366.
    28. 28)
      • 28. Zhang, J., Ye, D., Sun, Z., et al: ‘Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking manoeuvre with actuator saturation and misalignment’, Acta Astronaut., 2018, 143, pp. 221233.
    29. 29)
      • 29. Chen, H., Song, S., Zhu, Z.: ‘Robust finite-time attitude tracking control of rigid spacecraft under actuator saturation’, Int. J. Control Autom., 2018, 16, (1), pp. 115.
    30. 30)
      • 30. Yin, C., Hou, M., Li, M.: ‘Finite-time attitude controller design via dual-loop control strategy’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2016, 232, (2), pp. 215226.
    31. 31)
      • 31. Li, M., Hou, M., Yin, C.: ‘Constrained dual-loop attitude control design for spacecraft’, Aerosp. Sci. Technol., 2016, 55, pp. 170176.
    32. 32)
      • 32. Li, M., Hou, M., Yin, C.: ‘Constrained input to state controller design for spacecraft attitude stabilization’. American Control Conf. (ACC), Boston, America, July 2016, pp. 58625866.
    33. 33)
      • 33. Sonneveldt, L., Chu, Q., Mulder, J.A.: ‘Nonlinear flight control design using constrained adaptive backstepping’, J. Guid. Control Dyn., 2007, 30, (2), pp. 322336.
    34. 34)
      • 34. Farrell, J., Sharma, M., Polycarpou, M.: ‘Backstepping-based flight control with adaptive function approximation’, J. Guid. Control Dyn., 2005, 28, (6), pp. 10891102.
    35. 35)
      • 35. Chen, W., Yang, J., Guo, L., et al: ‘Disturbance-observer-based control and related methods–an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10831095.
    36. 36)
      • 36. Yang, J., Chen, W., Ding, Z.: ‘Disturbance observers and applications’, Trans. Inst. Meas. Control, 2016, 38, (6), pp. 621624.
    37. 37)
      • 37. Sun, L., Zheng, Z.: ‘Disturbance-observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement and uncertainty’, IEEE Trans. Ind. Electron., 2017, 64, (10), pp. 79948002.
    38. 38)
      • 38. Guo, L., Chen, W.: ‘Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach’, Int. J. Robust Nonlinear, 2005, 15, (3), pp. 109112.
    39. 39)
      • 39. Huo, B., Xia, Y., Yin, L., et al: ‘Fuzzy adaptive fault-tolerant output feedback attitude-tracking control of rigid spacecraft’, IEEE Trans. Syst. Man Cybern., 2017, 47, (8), pp. 18981908.
    40. 40)
      • 40. Ruiter, A.H.J.D., Damaren, C.J., Forbes, J.R.: ‘Spacecraft dynamics and control: an introduction’ (Hoboken, New Jersey, 2013, 1st edn.).
    41. 41)
      • 41. Gui, H., Vukovich, G.: ‘Adaptive integral sliding mode control for spacecraft attitude tracking with actuator uncertainty’, J. Franklin Inst., 2015, 352, (12), pp. 58325852.
    42. 42)
      • 42. Chen, M., Ren, B., Wu, Q., et al: ‘Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer’, Sci. China, 2015, 58, (7), pp. 0702020107020212.
    43. 43)
      • 43. Chovancova, A., Fico, T., Hubinsky, P., et al: ‘Comparison of various quaternion-based control methods applied to quadrotor with disturbance observer and position estimator’, Robot. Auton. Syst., 2016, 79, pp. 8798.
    44. 44)
      • 44. An, H., Liu, J., Wang, C., et al: ‘Disturbance observer-based antiwindup control for airbreathing hypersonic vehicles’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 30383049.
    45. 45)
      • 45. Junkins, J.L., Schaub, H.: ‘Analytical mechanics of space systems’ (AIAA Education, Reston, 2003, 2nd edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5707
Loading

Related content

content/journals/10.1049/iet-cta.2018.5707
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address