© The Institution of Engineering and Technology
A study on hypersonic vehicle (HSV) with centroid shift and actuator fault is made to investigate the adaptive faulttolerant control for stability recovery of HSV operating in offnominal conditions. Based on the modelling and analyzing the influence of centroid shift and actuator fault on HSV, the centroid shift can cause system uncertainty, variation of inertial matrix, eccentric moment and strong coupling between the longitudinal and lateral motions, resulting in the high demand for controller. According to the difference of response time, the attitude system of HSV is divided into slow and fast loop. For handling the effect of centroid shift, actuator fault and external disturbance, an improved sliding mode controller combined with adaptive estimator is designed for the slowloop. Nonlinear general predictive controller (NGPC) assisted by adaptive radial basis function neural network (RBFNN) is developed for fastloop. In addition, the nonsingular improvements to fastloop controller are also made to cope with such the problem caused by the estimation of inertial matrix. The stability and tracking ability of the system are analyzed by the Lyapunov theorem of stability. At last, the simulation results show that the faulttolerant control algorithm provided in this paper is very effective.
References


1)

1. Wang, F., Zong, Q., Hua, C., et al: ‘Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer’, Int. J. Adv. Robot. Syst., 2017, 14, (3), pp. 1–13.

2)

2. Yu, X., Li, P., Zhang, Y.: ‘The design of fixedtime observer and finitetime faulttolerant control for hypersonic gliding vehicles’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 4135–4144.

3)

3. Jiang, B., Xu, D., Shi, P., et al: ‘Adaptive neural observerbased backstepping fault tolerant control for near space vehicle under control effector damage’, IET Control Theory Applic., 2014, 8, (9), pp. 658–666.

4)

4. Xu, D.Z., Jiang, B., Shi, P.: ‘Robust NSV faulttolerant control system design against actuator faults and control surface damage under actuator dynamics’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 5919–5928.

5)

5. Jiang, B., Gao, Z., Shi, P., et al: ‘Adaptive faulttolerant tracking control of nearspace vehicle using takagisugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 1000–1007.

6)

6. He, J.J., Qi, R.U., Jiang, B., et al: ‘Adaptive output feedback fault tolerant control design for hypersonic flight vehicles’, J. Franklin Inst., 2015, 352, (5), pp. 1811–1835.

7)

7. Su, R., Zong, Q., Tian, B., et al: ‘Comprehensive design of disturbance observer and nonsingular terminal sliding mode control for reusable launch vehicles’, IET Control Theory Appl., 2015, 9, (12), pp. 1821–1830.

8)

8. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Flight dynamics modeling and hybrid adaptive control of damaged asymmetric aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 171–186.

9)

9. Bacon, B.J., Gregory, I.M.: ‘General equations of motion for a damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf., Hilton Head, South Carolina, August 2007, pp. 6306–6049.

10)

10. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf. and Exhibit, Keystone, Colorado, August 2006, pp. 6049–6073.

11)

11. Liu, Y., Tao, G., Joshi, S.M.: ‘Modeling and Model reference adaptive control of aircraft with asymmetric damage’, J. Guid. Control Dyn., 2010, 33, (5), pp. 1500–1517.

12)

12. Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., et al: ‘Modular flight control reconfiguration design and simulation’, Control Eng. Pract., 2011, 19, (6), pp. 540–554.

13)

13. Kaneshige, J., Bull, J., Totah, J.: ‘Generic neural flight control and autopilot system’. AIAA Guidance, Navigation, and Control Conf., Denver, CO, August 2000, pp. 4281–4292.

14)

14. Bu, X., He, G., Wang, K.: ‘Tracking control of airbreathing hypersonic vehicles with nonaffine dynamics via improved neural backstepping design’, ISA Trans., 2018, 75, 88–100, .

15)

15. Bu, X., Wu, X., Huang, J., et al: ‘A guaranteed transient performancebased adaptive neural control scheme with lowcomplexity computation for flexible airbreathing hypersonic vehicles’, Nonlinear Dyn., 2016, 84, pp. 2175–2194.

16)

16. Bu, X.: ‘Guaranteeing prescribed output tracking performance for airbreathing hypersonic vehicles via nonaffine backstepping control design’, Nonlinear Dyn., 2018, 91, pp. 525–538.

17)

17. Zong, Q., Wang, F., Tian, B., et al: ‘Robust adaptive dynamic surface control design for a flexible airbreathing hypersonic vehicle with input constraints and uncertainty’', Nonlinear Dyn., 2014, 78, pp. 289–315.

18)

18. Liu, Y., Tao, G.: ‘Multivariable MRAC for aircraft with abrupt damages’. IEEE American Control Conf., Seattle, USA, June 2008, pp. 2981–2986.

19)

19. Fan, J.S., Zhang, H.X., Zhang, M.K., et al: ‘Adaptive secondorder terminal sliding mode control for aircraft reentry attitude’, Control Decis., 2012, 27, (3), pp. 403–407.

20)

20. Huang, G.Y., Jiang, C.S.: 2007,.

21)

21. Yang, L., Yang, J.: ‘Nonsingular fast terminal sliding mode control for nonlinear dynamical systems’, Int. J. Robust Nonlinear Control, 2011, 21, (16), pp. 1865–1879.

22)

22. Li, H., Cai, Y.: ‘Sliding mode control with double power reaching law’, Control Decis., 2016, 3, pp. 498–502.

23)

23. Meng, Y., Jiang, B., Qi, R.: ‘Faulttolerant antiwindup control for hypersonic vehicles in reentry based on ISMDO’, J. Franklin Inst., 2018, 355, (5), 2067–2090, .

24)

24. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: ‘Optimal control of nonlinear systems: a predictive control approach’, Automatica, 2003, 39, (4), pp. 633–641.

25)

25. Nguyen, N.T., Krishnakumar, K.S., Kaneshige, J.T., et al: ‘Flight dynamics and hybrid adaptive control of damaged aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 751–764.

26)

26. Wang, W.Y., Chien, Y.H., Leu, Y.G., et al: ‘Adaptive TS fuzzyneural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws’, Automatica, 2010, 46, (5), pp. 852–863.

27)

27. Wang, D., Zong, Q., Tian, B., et al: ‘Neural network disturbance observerbased distributed finitetime formation tracking control for multiple unmanned helicopterss’, ISA Trans., 2018, 73, 208–226, .

28)

28. Lai, G.Y., Liu, Z., Zhang, Y., et al: ‘Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier’, IEEE Trans Neural Network Learn Syst., 2016, 27, (1), pp. 18–31.

29)

29. Tang, T., Qi, R., Jiang, B.: ‘Adaptive nonlinear generalized predictive control for hypersonic vehicle with unknown parameters and control constraints’, Proc. Inst. Mech. Eng. Part G, J. Aerosp. Eng., 2017, .
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta.2018.5578
Related content
content/journals/10.1049/ietcta.2018.5578
pub_keyword,iet_inspecKeyword,pub_concept
6
6