access icon free Adaptive non-singular fault-tolerant control for hypersonic vehicle with unexpected centroid shift

A study on hypersonic vehicle (HSV) with centroid shift and actuator fault is made to investigate the adaptive fault-tolerant control for stability recovery of HSV operating in off-nominal conditions. Based on the modelling and analyzing the influence of centroid shift and actuator fault on HSV, the centroid shift can cause system uncertainty, variation of inertial matrix, eccentric moment and strong coupling between the longitudinal and lateral motions, resulting in the high demand for controller. According to the difference of response time, the attitude system of HSV is divided into slow and fast loop. For handling the effect of centroid shift, actuator fault and external disturbance, an improved sliding mode controller combined with adaptive estimator is designed for the slow-loop. Nonlinear general predictive controller (NGPC) assisted by adaptive radial basis function neural network (RBFNN) is developed for fast-loop. In addition, the nonsingular improvements to fast-loop controller are also made to cope with such the problem caused by the estimation of inertial matrix. The stability and tracking ability of the system are analyzed by the Lyapunov theorem of stability. At last, the simulation results show that the fault-tolerant control algorithm provided in this paper is very effective.

Inspec keywords: vehicle dynamics; motion control; radial basis function networks; adaptive control; mechanical stability; variable structure systems; predictive control; aircraft control; matrix algebra; control system synthesis; neurocontrollers; fault tolerant control; aerodynamics

Other keywords: longitudinal motion; adaptive radial basis function neural network; system input matrix; HSV; aerodynamic parameters; nonlinear general predictive control; lateral motion; fast-loop controller; fault-tolerant control algorithm; aerodynamic modelling; actuator fault; hypersonic vehicle; adaptive nonsingular fault-tolerant control; eccentric moment; off-nominal flight conditions; improved sliding mode control; adaptive estimation method; adaptive fault-tolerant control method; unexpected centroid shift; nonsingular fault-tolerant controller; control derivatives; control slow-loop

Subjects: Optimal control; Multivariable control systems; Spatial variables control; Aerospace control; Fluid mechanics and aerodynamics (mechanical engineering); Neurocontrol; Control system analysis and synthesis methods; Self-adjusting control systems; Control technology and theory (production); Stability in control theory; Algebra; Algebra; Buckling and instability (mechanical engineering); Vehicle mechanics

References

    1. 1)
      • 23. Meng, Y., Jiang, B., Qi, R.: ‘Fault-tolerant anti-windup control for hypersonic vehicles in reentry based on ISMDO’, J. Franklin Inst., 2018, 355, (5), 20672090, DOI: 10.1016/j.jfranklin.2017.12.004.
    2. 2)
      • 26. Wang, W.-Y., Chien, Y.-H., Leu, Y.-G., et al: ‘Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws’, Automatica, 2010, 46, (5), pp. 852863.
    3. 3)
      • 18. Liu, Y., Tao, G.: ‘Multivariable MRAC for aircraft with abrupt damages’. IEEE American Control Conf., Seattle, USA, June 2008, pp. 29812986.
    4. 4)
      • 2. Yu, X., Li, P., Zhang, Y.: ‘The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 41354144.
    5. 5)
      • 28. Lai, G.Y., Liu, Z., Zhang, Y., et al: ‘Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier’, IEEE Trans Neural Network Learn Syst., 2016, 27, (1), pp. 1831.
    6. 6)
      • 16. Bu, X.: ‘Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design’, Nonlinear Dyn., 2018, 91, pp. 525538.
    7. 7)
      • 1. Wang, F., Zong, Q., Hua, C., et al: ‘Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer’, Int. J. Adv. Robot. Syst., 2017, 14, (3), pp. 113.
    8. 8)
      • 25. Nguyen, N.T., Krishnakumar, K.S., Kaneshige, J.T., et al: ‘Flight dynamics and hybrid adaptive control of damaged aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 751764.
    9. 9)
      • 21. Yang, L., Yang, J.: ‘Nonsingular fast terminal sliding mode control for nonlinear dynamical systems’, Int. J. Robust Nonlinear Control, 2011, 21, (16), pp. 18651879.
    10. 10)
      • 5. Jiang, B., Gao, Z., Shi, P., et al: ‘Adaptive fault-tolerant tracking control of near-space vehicle using takagi-sugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 10001007.
    11. 11)
      • 12. Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., et al: ‘Modular flight control reconfiguration design and simulation’, Control Eng. Pract., 2011, 19, (6), pp. 540554.
    12. 12)
      • 4. Xu, D.Z., Jiang, B., Shi, P.: ‘Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 59195928.
    13. 13)
      • 17. Zong, Q., Wang, F., Tian, B., et al: ‘Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty’', Nonlinear Dyn., 2014, 78, pp. 289315.
    14. 14)
      • 14. Bu, X., He, G., Wang, K.: ‘Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design’, ISA Trans., 2018, 75, 88100, DOI: 10.1016/j.isatra.2018.02.010.
    15. 15)
      • 6. He, J.J., Qi, R.U., Jiang, B., et al: ‘Adaptive output feedback fault tolerant control design for hypersonic flight vehicles’, J. Franklin Inst., 2015, 352, (5), pp. 18111835.
    16. 16)
      • 3. Jiang, B., Xu, D., Shi, P., et al: ‘Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage’, IET Control Theory Applic., 2014, 8, (9), pp. 658666.
    17. 17)
      • 13. Kaneshige, J., Bull, J., Totah, J.: ‘Generic neural flight control and autopilot system’. AIAA Guidance, Navigation, and Control Conf., Denver, CO, August 2000, pp. 42814292.
    18. 18)
      • 19. Fan, J.S., Zhang, H.X., Zhang, M.K., et al: ‘Adaptive second-order terminal sliding mode control for aircraft re-entry attitude’, Control Decis., 2012, 27, (3), pp. 403407.
    19. 19)
      • 27. Wang, D., Zong, Q., Tian, B., et al: ‘Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopterss’, ISA Trans., 2018, 73, 208226, https://doi.org/10.1016/j.isatra.2017.12.011.
    20. 20)
      • 22. Li, H., Cai, Y.: ‘Sliding mode control with double power reaching law’, Control Decis., 2016, 3, pp. 498502.
    21. 21)
      • 11. Liu, Y., Tao, G., Joshi, S.M.: ‘Modeling and Model reference adaptive control of aircraft with asymmetric damage’, J. Guid. Control Dyn., 2010, 33, (5), pp. 15001517.
    22. 22)
      • 7. Su, R., Zong, Q., Tian, B., et al: ‘Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles’, IET Control Theory Appl., 2015, 9, (12), pp. 18211830.
    23. 23)
      • 8. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Flight dynamics modeling and hybrid adaptive control of damaged asymmetric aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 171186.
    24. 24)
      • 29. Tang, T., Qi, R., Jiang, B.: ‘Adaptive nonlinear generalized predictive control for hypersonic vehicle with unknown parameters and control constraints’, Proc. Inst. Mech. Eng. Part G, J. Aerosp. Eng., 2017, 095441001773757.
    25. 25)
      • 24. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: ‘Optimal control of nonlinear systems: a predictive control approach’, Automatica, 2003, 39, (4), pp. 633641.
    26. 26)
      • 20. Huang, G.Y., Jiang, C.S.: 2007‘Robust Adaptive Control of Aerospace Vehicles Re-entry Based on Terminal Sliding Mode Control’. PhD thesis, Nanjing University of Aeronautics and Astronautics,.
    27. 27)
      • 9. Bacon, B.J., Gregory, I.M.: ‘General equations of motion for a damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf., Hilton Head, South Carolina, August 2007, pp. 63066049.
    28. 28)
      • 10. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf. and Exhibit, Keystone, Colorado, August 2006, pp. 60496073.
    29. 29)
      • 15. Bu, X., Wu, X., Huang, J., et al: ‘A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles’, Nonlinear Dyn., 2016, 84, pp. 21752194.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5578
Loading

Related content

content/journals/10.1049/iet-cta.2018.5578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading