http://iet.metastore.ingenta.com
1887

Adaptive non-singular fault-tolerant control for hypersonic vehicle with unexpected centroid shift

Adaptive non-singular fault-tolerant control for hypersonic vehicle with unexpected centroid shift

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A study on hypersonic vehicle (HSV) with centroid shift and actuator fault is made to investigate the adaptive fault-tolerant control for stability recovery of HSV operating in off-nominal conditions. Based on the modelling and analyzing the influence of centroid shift and actuator fault on HSV, the centroid shift can cause system uncertainty, variation of inertial matrix, eccentric moment and strong coupling between the longitudinal and lateral motions, resulting in the high demand for controller. According to the difference of response time, the attitude system of HSV is divided into slow and fast loop. For handling the effect of centroid shift, actuator fault and external disturbance, an improved sliding mode controller combined with adaptive estimator is designed for the slow-loop. Nonlinear general predictive controller (NGPC) assisted by adaptive radial basis function neural network (RBFNN) is developed for fast-loop. In addition, the nonsingular improvements to fast-loop controller are also made to cope with such the problem caused by the estimation of inertial matrix. The stability and tracking ability of the system are analyzed by the Lyapunov theorem of stability. At last, the simulation results show that the fault-tolerant control algorithm provided in this paper is very effective.

References

    1. 1)
      • 1. Wang, F., Zong, Q., Hua, C., et al: ‘Dynamic surface tracking controller design for a constrained hypersonic vehicle based on disturbance observer’, Int. J. Adv. Robot. Syst., 2017, 14, (3), pp. 113.
    2. 2)
      • 2. Yu, X., Li, P., Zhang, Y.: ‘The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 41354144.
    3. 3)
      • 3. Jiang, B., Xu, D., Shi, P., et al: ‘Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage’, IET Control Theory Applic., 2014, 8, (9), pp. 658666.
    4. 4)
      • 4. Xu, D.Z., Jiang, B., Shi, P.: ‘Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 59195928.
    5. 5)
      • 5. Jiang, B., Gao, Z., Shi, P., et al: ‘Adaptive fault-tolerant tracking control of near-space vehicle using takagi-sugeno fuzzy models’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 10001007.
    6. 6)
      • 6. He, J.J., Qi, R.U., Jiang, B., et al: ‘Adaptive output feedback fault tolerant control design for hypersonic flight vehicles’, J. Franklin Inst., 2015, 352, (5), pp. 18111835.
    7. 7)
      • 7. Su, R., Zong, Q., Tian, B., et al: ‘Comprehensive design of disturbance observer and non-singular terminal sliding mode control for reusable launch vehicles’, IET Control Theory Appl., 2015, 9, (12), pp. 18211830.
    8. 8)
      • 8. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Flight dynamics modeling and hybrid adaptive control of damaged asymmetric aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 171186.
    9. 9)
      • 9. Bacon, B.J., Gregory, I.M.: ‘General equations of motion for a damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf., Hilton Head, South Carolina, August 2007, pp. 63066049.
    10. 10)
      • 10. Nguyen, N., Krishnakumar, K., Kaneshige, J., et al: ‘Dynamics and adaptive control for stability recovery of damaged asymmetric aircraft’. AIAA Guidance, Navigation, and Control Conf. and Exhibit, Keystone, Colorado, August 2006, pp. 60496073.
    11. 11)
      • 11. Liu, Y., Tao, G., Joshi, S.M.: ‘Modeling and Model reference adaptive control of aircraft with asymmetric damage’, J. Guid. Control Dyn., 2010, 33, (5), pp. 15001517.
    12. 12)
      • 12. Lombaerts, T.J.J., Chu, Q.P., Mulder, J.A., et al: ‘Modular flight control reconfiguration design and simulation’, Control Eng. Pract., 2011, 19, (6), pp. 540554.
    13. 13)
      • 13. Kaneshige, J., Bull, J., Totah, J.: ‘Generic neural flight control and autopilot system’. AIAA Guidance, Navigation, and Control Conf., Denver, CO, August 2000, pp. 42814292.
    14. 14)
      • 14. Bu, X., He, G., Wang, K.: ‘Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design’, ISA Trans., 2018, 75, 88100, DOI: 10.1016/j.isatra.2018.02.010.
    15. 15)
      • 15. Bu, X., Wu, X., Huang, J., et al: ‘A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles’, Nonlinear Dyn., 2016, 84, pp. 21752194.
    16. 16)
      • 16. Bu, X.: ‘Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design’, Nonlinear Dyn., 2018, 91, pp. 525538.
    17. 17)
      • 17. Zong, Q., Wang, F., Tian, B., et al: ‘Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty’', Nonlinear Dyn., 2014, 78, pp. 289315.
    18. 18)
      • 18. Liu, Y., Tao, G.: ‘Multivariable MRAC for aircraft with abrupt damages’. IEEE American Control Conf., Seattle, USA, June 2008, pp. 29812986.
    19. 19)
      • 19. Fan, J.S., Zhang, H.X., Zhang, M.K., et al: ‘Adaptive second-order terminal sliding mode control for aircraft re-entry attitude’, Control Decis., 2012, 27, (3), pp. 403407.
    20. 20)
      • 20. Huang, G.Y., Jiang, C.S.: 2007‘Robust Adaptive Control of Aerospace Vehicles Re-entry Based on Terminal Sliding Mode Control’. PhD thesis, Nanjing University of Aeronautics and Astronautics,.
    21. 21)
      • 21. Yang, L., Yang, J.: ‘Nonsingular fast terminal sliding mode control for nonlinear dynamical systems’, Int. J. Robust Nonlinear Control, 2011, 21, (16), pp. 18651879.
    22. 22)
      • 22. Li, H., Cai, Y.: ‘Sliding mode control with double power reaching law’, Control Decis., 2016, 3, pp. 498502.
    23. 23)
      • 23. Meng, Y., Jiang, B., Qi, R.: ‘Fault-tolerant anti-windup control for hypersonic vehicles in reentry based on ISMDO’, J. Franklin Inst., 2018, 355, (5), 20672090, DOI: 10.1016/j.jfranklin.2017.12.004.
    24. 24)
      • 24. Chen, W.H., Ballance, D.J., Gawthrop, P.J.: ‘Optimal control of nonlinear systems: a predictive control approach’, Automatica, 2003, 39, (4), pp. 633641.
    25. 25)
      • 25. Nguyen, N.T., Krishnakumar, K.S., Kaneshige, J.T., et al: ‘Flight dynamics and hybrid adaptive control of damaged aircraft’, J. Guid. Control Dyn., 2008, 31, (3), pp. 751764.
    26. 26)
      • 26. Wang, W.-Y., Chien, Y.-H., Leu, Y.-G., et al: ‘Adaptive T-S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws’, Automatica, 2010, 46, (5), pp. 852863.
    27. 27)
      • 27. Wang, D., Zong, Q., Tian, B., et al: ‘Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopterss’, ISA Trans., 2018, 73, 208226, https://doi.org/10.1016/j.isatra.2017.12.011.
    28. 28)
      • 28. Lai, G.Y., Liu, Z., Zhang, Y., et al: ‘Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier’, IEEE Trans Neural Network Learn Syst., 2016, 27, (1), pp. 1831.
    29. 29)
      • 29. Tang, T., Qi, R., Jiang, B.: ‘Adaptive nonlinear generalized predictive control for hypersonic vehicle with unknown parameters and control constraints’, Proc. Inst. Mech. Eng. Part G, J. Aerosp. Eng., 2017, 095441001773757.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5578
Loading

Related content

content/journals/10.1049/iet-cta.2018.5578
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address