http://iet.metastore.ingenta.com
1887

Pinning event-triggered control for stochastic discrete-time complex networks with time-varying delay

Pinning event-triggered control for stochastic discrete-time complex networks with time-varying delay

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the distributed event-triggered control strategy is found to cope with the pinning control problem of stochastic discrete-time complex networks with time-varying delay. Under the devised mechanism, exponential mean-square synchronisation can be implemented in the directed networks. By utilising the Lyapunov functional method and the stochastic analysis, several sufficient conditions are established. Moreover, the issue of average synchronisation is investigated. For the stochastic complex networks without reference state, it is demonstrated that all nodes can converge to a time-varying weighted average exponentially by a suitable distributed event-triggered controller. Finally, some numerical examples are presented to indicate the effectiveness of the devised control strategies.

References

    1. 1)
      • 1. Watts, D.J., Strogatz, S.H.: ‘Collective dynamics of ‘small-world’ networks’, Nature, 1998, 393, (6684), p. 440.
    2. 2)
      • 2. Barabási, A.L., Albert, R.: ‘Emergence of scaling in random networks’, Science, 1999, 286, (5439), pp. 509512.
    3. 3)
      • 3. Liu, Y., Wang, Z., Liang, J., et al: ‘Synchronization and state estimation for discrete-time complex networks with distributed delays’, IEEE Trans. Syst. Man. Cybern. B, Cybern., 2008, 38, (5), pp. 13141325.
    4. 4)
      • 4. Su, H., Wu, H., Chen, X.: ‘Observer-based discrete-time nonnegative edge synchronization of networked systems’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (10), pp. 24462455.
    5. 5)
      • 5. Li, Z., Zhang, W., Fang, J.A., et al: ‘Synchronisation of discrete-time complex networks with delayed heterogeneous impulses’, IET Control Theory A, 2015, 9, (18), pp. 26482656.
    6. 6)
      • 6. Sakthivel, R., Mathiyalagan, K., Anthoni, S.M.: ‘Robust H control for uncertain discrete-time stochastic neural networks with time-varying delays’, IET Control Theory A, 2012, 6, (9), pp. 12201228.
    7. 7)
      • 7. Kaslik, E., Sivasundaram, S.: ‘Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis’, Neural Netw., 2011, 24, (4), pp. 370377.
    8. 8)
      • 8. Cao, J., Ren, F.: ‘Exponential stability of discrete-time genetic regulatory networks with delays’, IEEE Trans. Neural Netw., 2008, 19, (3), pp. 520523.
    9. 9)
      • 9. Lin, P., Jia, Y.: ‘Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies’, Automatica, 2009, 45, (9), pp. 21542158.
    10. 10)
      • 10. You, K., Xie, L.: ‘Network topology and communication data rate for consensusability of discrete-time multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (10), pp. 22622275.
    11. 11)
      • 11. Hu, H., Lin, Z.: ‘Consensus of a class of discrete-time nonlinear multi-agent systems in the presence of communication delays’, ISA Trans., 2017, 71, pp. 1020.
    12. 12)
      • 12. Liang, J., Wang, Z., Liu, X.: ‘Exponential synchronization of stochastic delayed discrete-time complex networks’, Nonlinear Dyn., 2008, 53, (1-2), pp. 153165.
    13. 13)
      • 13. Wang, Z., Wang, Y., Liu, Y.: ‘Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays’, IEEE Trans. Neural Netw., 2010, 21, (1), pp. 1125.
    14. 14)
      • 14. Shen, B., Wang, Z., Liu, X.: ‘Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon’, IEEE Trans. Neural Netw., 2011, 22, (1), pp. 145157.
    15. 15)
      • 15. Sakthivel, R., Sathishkumar, M., Kaviarasan, B., et al: ‘Synchronization and state estimation for stochastic complex networks with uncertain inner coupling’, Neurocomputing, 2017, 238, pp. 4455.
    16. 16)
      • 16. Wu, A.G., Qian, Y.Y., Liu, W.: ‘Stochastic stability for discrete-time antilinear systems with Markovian jumping parameters’, IET Control Theory A, 2015, 9, (9), pp. 13991410.
    17. 17)
      • 17. Li, Q., Zhu, Q., Zhong, S., et al: ‘Extended dissipative state estimation for uncertain discrete-time Markov jump neural networks with mixed time delays’, ISA Trans., 2017, 66, pp. 200208.
    18. 18)
      • 18. Bao, H., Cao, J.: ‘Delay-distribution-dependent state estimation for discrete-time stochastic neural networks with random delay’, Neural Netw., 2011, 24, (1), pp. 1928.
    19. 19)
      • 19. Arunkumar, A., Sakthivel, R., Mathiyalagan, K., et al: ‘Robust stochastic stability of discrete-time fuzzy Markovian jump neural networks’, ISA Trans., 2014, 53, (4), pp. 10061014.
    20. 20)
      • 20. Lee, S.H., Park, M.J., Kwon, O.M., et al: ‘Advanced sampled-data synchronization control for complex dynamical networks with coupling time-varying delays’, Inf. Sci., 2017, 420, pp. 454465.
    21. 21)
      • 21. Liu, D., Yang, G.H.: ‘Event-based model-free adaptive control for discrete-time non-linear processes’, IET Control Theory A., 2017, 11, (15), pp. 25312538.
    22. 22)
      • 22. Chen, X., Hao, F.: ‘Event-triggered average consensus control for discrete-time multi-agent systems’, IET Control Theory A., 2012, 6, (16), pp. 24932498.
    23. 23)
      • 23. Sakthivel, R., Santra, S., Kaviarasan, B., et al: ‘Dissipative analysis for network-based singular systems with non-fragile controller and event-triggered sampling scheme’, J. Franklin Inst., 2017, 354, (12), pp. 47394761.
    24. 24)
      • 24. Ding, D., Wang, Z., Shen, B., et al: ‘Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability’, Automatica, 2015, 62, pp. 284291.
    25. 25)
      • 25. Ma, L., Wang, Z., Lam, H.K.: ‘Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 35243531.
    26. 26)
      • 26. Dong, H., Wang, Z., Shen, B., et al: ‘Variance-constrained H control for a class of nonlinear stochastic discrete time-varying systems: the event-triggered design’, Automatica, 2016, 72, pp. 2836.
    27. 27)
      • 27. Shen, B., Wang, Z., Qiao, H.: ‘Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (5), pp. 11521163.
    28. 28)
      • 28. Zhang, C., Jia, Y.: ‘Distributed estimation for stochastic hybrid systems with event-triggered sensor schedule’, IET Control Theory A, 2016, 11, (2), pp. 173181.
    29. 29)
      • 29. Zhang, H., Cheng, J., Wang, H., et al: ‘Robust finite-time event-triggered H boundedness for network-based Markovian jump nonlinear systems’, ISA Trans., 2016, 63, pp. 3238.
    30. 30)
      • 30. Wang, X.F., Chen, G.: ‘Pinning control of scale-free dynamical networks’, Physica A, 2002, 310, (3-4), pp. 521531.
    31. 31)
      • 31. Zhou, L., Wang, C., Zhou, L.: ‘Cluster synchronization on multiple sub-networks of complex networks with nonidentical nodes via pinning control’, Nonlinear Dyn., 2016, 83, (1-2), pp. 10791100.
    32. 32)
      • 32. Horn, R.A., Johnson, C.R.: ‘Matrix analysis’ (Cambridge University Press, Cambridge, 1990).
    33. 33)
      • 33. Song, Q., Cao, J.: ‘On pinning synchronization of directed and undirected complex dynamical networks’, IEEE Trans. Circuits Syst. I, 2010, 57, (3), pp. 672680.
    34. 34)
      • 34. Ma, L., Wang, Z., Liu, Y., et al: ‘A note on guaranteed cost control for nonlinear stochastic systems with input saturation and mixed time-delays’, Int. J. Robust Nonlinear, 2017, 27, (18), pp. 44434456.
    35. 35)
      • 35. Kopetz, H.: ‘Event-triggered versus time-triggered real-time systems’ (Springer, Berlin, Heidelberg, 1991).
    36. 36)
      • 36. Gao, H., Lam, J., Chen, G.: ‘New criteria for synchronization stability of general complex dynamical networks with coupling delays’, Phys. Lett. A, 2006, 360, (2), pp. 263273.
    37. 37)
      • 37. Yu, W., Chen, G., Cao, M.: ‘Consensus in directed networks of agents with nonlinear dynamics’, IEEE Trans. Autom. Control, 2011, 56, (6), pp. 14361441.
    38. 38)
      • 38. Boyd, S., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, 1994).
    39. 39)
      • 39. Gahinet, P., Nemirovskii, A., Laub, A.J., et al: ‘The LMI control toolbox’. Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, USA, 1994, vol. 3, pp. 20382041.
    40. 40)
      • 40. Beck, C.: ‘Computational issues in solving LMIs’. Proc. 30th IEEE Conf. on Decision and Control, Brighton, UK, 1991, pp. 12591260.
    41. 41)
      • 41. Iwasaki, T., Skelton, R.E.: ‘All controllers for the general H control problem: LMI existence conditions and state space formulas’, Automatica, 1994, 30, (8), pp. 13071317.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5560
Loading

Related content

content/journals/10.1049/iet-cta.2018.5560
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address