access icon free Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters

This study deals with the fault-tolerant control problem for a class of two independent wheeled mobile robot systems with actuator faults and unknown robot parameters. Partial loss of control effectiveness and bias-actuator faults are addressed without knowing eventually faulty information of actuators. Adaptive schemes are developed to estimate unknown faulty parameters of actuator faults and unknown robot parameters of viscous friction factor and driving gain. Then, the backstepping control technique is utilised to construct the state feed-back control strategy based on the adaptive estimations. By using the Lyapunov stability theory, it is shown that the forward speed and azimuthal angle of wheeled mobile robots can track the given trajectory asymptotically in the case of actuator faults and unknown parameters. The effectiveness of the proposed designs is illustrated via a mobile robot system.

Inspec keywords: fault tolerant control; robot dynamics; mobile robots; fault diagnosis; position control; actuators; control system synthesis; stability; friction; nonlinear control systems; Lyapunov methods; adaptive control; control nonlinearities

Other keywords: state feed-back control strategy; adaptive fault-tolerant control; independent wheeled mobile robot systems; unknown robot parameters; mobile robot system; unknown faulty parameters; backstepping control technique; fault-tolerant control problem; wheeled mobile robots; bias-actuator faults; control effectiveness

Subjects: Spatial variables control; Tribology (mechanical engineering); Self-adjusting control systems; Control system analysis and synthesis methods; Robot and manipulator mechanics; Mobile robots; Nonlinear control systems; Stability in control theory

References

    1. 1)
      • 4. Zhao, Y., Wang, J., Yan, F., et al: ‘Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays’, Inf. Sci., 2019, 473, pp. 227238.
    2. 2)
      • 30. Qin, J., Zhang, G., Zheng, W.X., et al: ‘Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults’, IEEE Trans. Cybern., 2019, 49, (5), pp. 16051615, DOI: 10.1109/TCYB.2018.2805167.
    3. 3)
      • 40. Jin, X.: ‘Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints’, Automatica, 2018, 94, pp. 6371.
    4. 4)
      • 29. Jin, X., Qin, J., Shi, Y., et al: ‘Auxiliary fault tolerant control with actuator amplitude saturation and limited rate’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (10), pp. 18161825.
    5. 5)
      • 39. Zhang, X., Cocquempot, V.: ‘Fault tolerant control for an electric 4WD vehicle's path tracking with active fault diagnosis’, IFAC Proc., 2014, 47, (3), pp. 67286734.
    6. 6)
      • 11. Hashim, H.A., El-Ferik, S., Lewis, F.L.: ‘Adaptive synchronisation of unknown nonlinear networked systems with prescribed performance’, Int. J. Syst. Sci., 2017, 48, (4), pp. 885898.
    7. 7)
      • 25. Watanabe, K., Tang, J., Nakamura, M., et al: ‘A fuzzy-Gaussian neural network and its application to mobile robot control’, IEEE Trans. Control Syst. Tech., 1996, 4, (2), pp. 193199.
    8. 8)
      • 26. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decis., 2014, 1, (1), pp. 75101.
    9. 9)
      • 8. Hashim, H.A., El-Ferik, S., Lewis, F.L.: ‘Neuro-adaptive cooperative tracking control with prescribed performance of unknown higher-order nonlinear multi-agent systems’, Int. J. Control, 2019, 92, (2), pp. 445460.
    10. 10)
      • 7. Su, X., Liu, X., Shi, P.: , et al: ‘Sliding mode control of discrete-time switched systems with repeated scalar nonlinearity’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 46044610.
    11. 11)
      • 3. Su, X., Liu, X., Song, Y.-D.: ‘Fault-tolerant control of multi-area power systems via sliding mode observer technique’, IEEE/ASME Trans. Mech., 2018, 23, (1), pp. 3847.
    12. 12)
      • 24. Sun, D.-H., Cui, M.-Y., Li, Y.-F.: ‘Adaptive backstepping control of wheeled mobile robots with parameter uncertainties’, J. Control Theory Appl., 2012, 29, (9), pp. 11981204.
    13. 13)
      • 21. Yang, H., Guo, M., Xia, Y., et al: ‘Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints’, IET Control Theory Applic., 2018, 12, (2), pp. 206214.
    14. 14)
      • 9. Liu, J., An, H., Gao, Y., et al: ‘Adaptive control of hypersonic flight vehicles with limited angle-of-attack’, IEEE/ASME Trans. Mech., 2018, 32, (2), pp. 883894.
    15. 15)
      • 18. Yoo, S.J.: ‘Adaptive tracking and obstacle avoidance for a class of mobile robots in the presence of unknown skidding and slipping’, IET Control Theory Applic., 2011, 5, (14), pp. 15971608.
    16. 16)
      • 1. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.: , et al: ‘Principles of robot motion: theory, algorithms, and implementations’ (MIT Press, Boston, 2005).
    17. 17)
      • 35. Ma, Y., Cocquempot, V., Najjar, M.E.B.E., et al: ‘Fault-tolerant control for physically linked two 2WD mobile robots with actuator faults’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1356313568.
    18. 18)
      • 37. Zhang, D., Liu, G., Zhou, H., et al: ‘Adaptive sliding mode fault tolerant coordination control for four wheel independently driven electric vehicles’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 90909100.
    19. 19)
      • 34. Li, X.-J., Yang, G.-H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theory Applic., 2012, 6, (10), pp. 15441551.
    20. 20)
      • 33. Jin, X.-Z., Yang, G.-H.: ‘Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances’, Acta Autom. Sin., 2009, 35, (3), pp. 305309.
    21. 21)
      • 36. Moradi, M., Fekih, A.: ‘A stability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances’, IEEE Trans. Control Syst. Tech., 2015, 23, (3), pp. 11641171.
    22. 22)
      • 10. Jin, X.-Z., He, T., Xia, J.-W., et al: ‘Adaptive general pinned synchronization of a class of disturbed complex networks’, Commun. Nonlinear Sci. Numer. Simul., 2019, 67, pp. 658669.
    23. 23)
      • 28. Ye, D., Su, L., Wang, J.-L., et al: ‘Adaptive reliable H optimization control for linear systems with time-varying actuator fault and delays’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 16351643.
    24. 24)
      • 6. Du, H., Chen, X., Wen, G., et al: ‘Discrete-time fast terminal sliding mode control for permanent magnet linear motor’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 99169927.
    25. 25)
      • 15. Dong, J., Yang, G.: ‘Reliable state feedback control of T-S fuzzy systems with sensor faults’, IEEE Trans. Fuzzy Syst., 2015, 23, (2), pp. 421433.
    26. 26)
      • 41. Yoo, S.J., Kim, T.-H.: ‘Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults’, Automatica, 2017, 77, pp. 380387.
    27. 27)
      • 38. Kamel, M.A., Zhang, Y., Yu, X.: ‘Fault-tolerant cooperative control of multiple wheeled mobile robots under actuator faults’, IFAC-PapersOnLine, 2015, 48, (21), pp. 11521157.
    28. 28)
      • 22. Hwang, C.-L., Wu, H.-M.: ‘Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode under-actuated control’, IET Control Theory Applic., 2013, 7, (7), pp. 952965.
    29. 29)
      • 5. Sun, G., Wu, L., Kuang, Z., et al: ‘Practical tracking control of linear motor via fractional-order sliding mode’, Automatica, 2018, 94, pp. 221235.
    30. 30)
      • 31. Jin, X., Wang, S., Qin, J., et al: ‘Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2018, 65, (7), pp. 22432255.
    31. 31)
      • 23. Han, S.I.: ‘Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems’, IET Control Theory Applic., 2018, 12, (2), pp. 282290.
    32. 32)
      • 16. Du, H., Wen, G., Yu, X., et al: ‘Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer’, Automatica, 2015, 62, (12), pp. 236242.
    33. 33)
      • 2. Koubaa, A., Bennaceur, H., Chaari, I., et al: ‘Robot path planning and cooperation: foundations, algorithms and experimentations’ (Springer, Berlin, 2018).
    34. 34)
      • 12. Jin, X.-Z., Wang, S.-F., Yang, G.-H., et al: ‘Robust adaptive hierarchical insensitive tracking control of a class of leader-follower agents’, Inf. Sci., 2017, 406-407, pp. 234247.
    35. 35)
      • 13. Su, X., Shi, P., Wu, L., et al: ‘Fault detection filtering for nonlinear switched stochastic systems’, IEEE Trans. Autom. Control, 2016, 61, (5), pp. 13101315.
    36. 36)
      • 32. Jin, X.-Z., Lü, S.-Y., Tan, Q., et al: ‘Comparisons of adaptive fault-tolerant insensitive control methods for a class of linear systems’, Int. J. Adapt. Control Signal Process., 2019, 33, pp. 175195.
    37. 37)
      • 19. Li, D.-Y., Song, Y.-D., Huang, D., et al: ‘Model-independent adaptive fault-tolerant output tracking control of 4WS4WD road vehicles’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 169179.
    38. 38)
      • 27. Ye, D., Chen, M.M., Yang, H.J.: ‘Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics’, IEEE Trans. Cybern., 2019, 49, (3), pp. 757767.
    39. 39)
      • 44. Shen, Z., Ma, Y., Song, Y.: ‘Robust adaptive fault-tolerant control of mobile robots with varying center of mass’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 24192428.
    40. 40)
      • 14. Dong, J., Wu, Y., Yang, G.: ‘A new sensor fault isolation method for T-S fuzzy systems’, IEEE Trans. Cybern., 2017, 47, (9), pp. 24372447.
    41. 41)
      • 45. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, Englewood Cliffs, NJ, 1996).
    42. 42)
      • 43. Xu, B., Qi, R., Jiang, B., et al: ‘Nussbaum gain adaptive fault tolerant control for hypersonic vehicles with uncertain parameters and actuator faults’, IFAC-PapersOnLine, 2017, 50, (1), pp. 52565262.
    43. 43)
      • 20. Qiu, Y., Xiang, L.: ‘Distributed adaptive coordinated tracking for coupled non-holonomic mobile robots’, IET Control Theory Applic., 2014, 8, (18), pp. 23362345.
    44. 44)
      • 17. Liu, J., Luo, W., Yang, X., et al: ‘Robust model-based fault diagnosis for PEM fuel cell air-feed system’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 32613270.
    45. 45)
      • 42. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying-based fault-tolerant controller design for a class of over-actuated non-linear systems with applications to electric vehicles’, IET Control Theory Applic., 2014, 8, (9), pp. 705717.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5492
Loading

Related content

content/journals/10.1049/iet-cta.2018.5492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading