http://iet.metastore.ingenta.com
1887

Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters

Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the fault-tolerant control problem for a class of two independent wheeled mobile robot systems with actuator faults and unknown robot parameters. Partial loss of control effectiveness and bias-actuator faults are addressed without knowing eventually faulty information of actuators. Adaptive schemes are developed to estimate unknown faulty parameters of actuator faults and unknown robot parameters of viscous friction factor and driving gain. Then, the backstepping control technique is utilised to construct the state feed-back control strategy based on the adaptive estimations. By using the Lyapunov stability theory, it is shown that the forward speed and azimuthal angle of wheeled mobile robots can track the given trajectory asymptotically in the case of actuator faults and unknown parameters. The effectiveness of the proposed designs is illustrated via a mobile robot system.

References

    1. 1)
      • 1. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.: , et al: ‘Principles of robot motion: theory, algorithms, and implementations’ (MIT Press, Boston, 2005).
    2. 2)
      • 2. Koubaa, A., Bennaceur, H., Chaari, I., et al: ‘Robot path planning and cooperation: foundations, algorithms and experimentations’ (Springer, Berlin, 2018).
    3. 3)
      • 3. Su, X., Liu, X., Song, Y.-D.: ‘Fault-tolerant control of multi-area power systems via sliding mode observer technique’, IEEE/ASME Trans. Mech., 2018, 23, (1), pp. 3847.
    4. 4)
      • 4. Zhao, Y., Wang, J., Yan, F., et al: ‘Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays’, Inf. Sci., 2019, 473, pp. 227238.
    5. 5)
      • 5. Sun, G., Wu, L., Kuang, Z., et al: ‘Practical tracking control of linear motor via fractional-order sliding mode’, Automatica, 2018, 94, pp. 221235.
    6. 6)
      • 6. Du, H., Chen, X., Wen, G., et al: ‘Discrete-time fast terminal sliding mode control for permanent magnet linear motor’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 99169927.
    7. 7)
      • 7. Su, X., Liu, X., Shi, P.: , et al: ‘Sliding mode control of discrete-time switched systems with repeated scalar nonlinearity’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 46044610.
    8. 8)
      • 8. Hashim, H.A., El-Ferik, S., Lewis, F.L.: ‘Neuro-adaptive cooperative tracking control with prescribed performance of unknown higher-order nonlinear multi-agent systems’, Int. J. Control, 2019, 92, (2), pp. 445460.
    9. 9)
      • 9. Liu, J., An, H., Gao, Y., et al: ‘Adaptive control of hypersonic flight vehicles with limited angle-of-attack’, IEEE/ASME Trans. Mech., 2018, 32, (2), pp. 883894.
    10. 10)
      • 10. Jin, X.-Z., He, T., Xia, J.-W., et al: ‘Adaptive general pinned synchronization of a class of disturbed complex networks’, Commun. Nonlinear Sci. Numer. Simul., 2019, 67, pp. 658669.
    11. 11)
      • 11. Hashim, H.A., El-Ferik, S., Lewis, F.L.: ‘Adaptive synchronisation of unknown nonlinear networked systems with prescribed performance’, Int. J. Syst. Sci., 2017, 48, (4), pp. 885898.
    12. 12)
      • 12. Jin, X.-Z., Wang, S.-F., Yang, G.-H., et al: ‘Robust adaptive hierarchical insensitive tracking control of a class of leader-follower agents’, Inf. Sci., 2017, 406-407, pp. 234247.
    13. 13)
      • 13. Su, X., Shi, P., Wu, L., et al: ‘Fault detection filtering for nonlinear switched stochastic systems’, IEEE Trans. Autom. Control, 2016, 61, (5), pp. 13101315.
    14. 14)
      • 14. Dong, J., Wu, Y., Yang, G.: ‘A new sensor fault isolation method for T-S fuzzy systems’, IEEE Trans. Cybern., 2017, 47, (9), pp. 24372447.
    15. 15)
      • 15. Dong, J., Yang, G.: ‘Reliable state feedback control of T-S fuzzy systems with sensor faults’, IEEE Trans. Fuzzy Syst., 2015, 23, (2), pp. 421433.
    16. 16)
      • 16. Du, H., Wen, G., Yu, X., et al: ‘Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer’, Automatica, 2015, 62, (12), pp. 236242.
    17. 17)
      • 17. Liu, J., Luo, W., Yang, X., et al: ‘Robust model-based fault diagnosis for PEM fuel cell air-feed system’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 32613270.
    18. 18)
      • 18. Yoo, S.J.: ‘Adaptive tracking and obstacle avoidance for a class of mobile robots in the presence of unknown skidding and slipping’, IET Control Theory Applic., 2011, 5, (14), pp. 15971608.
    19. 19)
      • 19. Li, D.-Y., Song, Y.-D., Huang, D., et al: ‘Model-independent adaptive fault-tolerant output tracking control of 4WS4WD road vehicles’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (1), pp. 169179.
    20. 20)
      • 20. Qiu, Y., Xiang, L.: ‘Distributed adaptive coordinated tracking for coupled non-holonomic mobile robots’, IET Control Theory Applic., 2014, 8, (18), pp. 23362345.
    21. 21)
      • 21. Yang, H., Guo, M., Xia, Y., et al: ‘Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints’, IET Control Theory Applic., 2018, 12, (2), pp. 206214.
    22. 22)
      • 22. Hwang, C.-L., Wu, H.-M.: ‘Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode under-actuated control’, IET Control Theory Applic., 2013, 7, (7), pp. 952965.
    23. 23)
      • 23. Han, S.I.: ‘Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems’, IET Control Theory Applic., 2018, 12, (2), pp. 282290.
    24. 24)
      • 24. Sun, D.-H., Cui, M.-Y., Li, Y.-F.: ‘Adaptive backstepping control of wheeled mobile robots with parameter uncertainties’, J. Control Theory Appl., 2012, 29, (9), pp. 11981204.
    25. 25)
      • 25. Watanabe, K., Tang, J., Nakamura, M., et al: ‘A fuzzy-Gaussian neural network and its application to mobile robot control’, IEEE Trans. Control Syst. Tech., 1996, 4, (2), pp. 193199.
    26. 26)
      • 26. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decis., 2014, 1, (1), pp. 75101.
    27. 27)
      • 27. Ye, D., Chen, M.M., Yang, H.J.: ‘Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics’, IEEE Trans. Cybern., 2019, 49, (3), pp. 757767.
    28. 28)
      • 28. Ye, D., Su, L., Wang, J.-L., et al: ‘Adaptive reliable H optimization control for linear systems with time-varying actuator fault and delays’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 16351643.
    29. 29)
      • 29. Jin, X., Qin, J., Shi, Y., et al: ‘Auxiliary fault tolerant control with actuator amplitude saturation and limited rate’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (10), pp. 18161825.
    30. 30)
      • 30. Qin, J., Zhang, G., Zheng, W.X., et al: ‘Adaptive sliding mode consensus tracking for second-order nonlinear multiagent systems with actuator faults’, IEEE Trans. Cybern., 2019, 49, (5), pp. 16051615, DOI: 10.1109/TCYB.2018.2805167.
    31. 31)
      • 31. Jin, X., Wang, S., Qin, J., et al: ‘Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2018, 65, (7), pp. 22432255.
    32. 32)
      • 32. Jin, X.-Z., Lü, S.-Y., Tan, Q., et al: ‘Comparisons of adaptive fault-tolerant insensitive control methods for a class of linear systems’, Int. J. Adapt. Control Signal Process., 2019, 33, pp. 175195.
    33. 33)
      • 33. Jin, X.-Z., Yang, G.-H.: ‘Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances’, Acta Autom. Sin., 2009, 35, (3), pp. 305309.
    34. 34)
      • 34. Li, X.-J., Yang, G.-H.: ‘Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures’, IET Control Theory Applic., 2012, 6, (10), pp. 15441551.
    35. 35)
      • 35. Ma, Y., Cocquempot, V., Najjar, M.E.B.E., et al: ‘Fault-tolerant control for physically linked two 2WD mobile robots with actuator faults’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1356313568.
    36. 36)
      • 36. Moradi, M., Fekih, A.: ‘A stability guaranteed robust fault tolerant control design for vehicle suspension systems subject to actuator faults and disturbances’, IEEE Trans. Control Syst. Tech., 2015, 23, (3), pp. 11641171.
    37. 37)
      • 37. Zhang, D., Liu, G., Zhou, H., et al: ‘Adaptive sliding mode fault tolerant coordination control for four wheel independently driven electric vehicles’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 90909100.
    38. 38)
      • 38. Kamel, M.A., Zhang, Y., Yu, X.: ‘Fault-tolerant cooperative control of multiple wheeled mobile robots under actuator faults’, IFAC-PapersOnLine, 2015, 48, (21), pp. 11521157.
    39. 39)
      • 39. Zhang, X., Cocquempot, V.: ‘Fault tolerant control for an electric 4WD vehicle's path tracking with active fault diagnosis’, IFAC Proc., 2014, 47, (3), pp. 67286734.
    40. 40)
      • 40. Jin, X.: ‘Fault-tolerant iterative learning control for mobile robots non-repetitive trajectory tracking with output constraints’, Automatica, 2018, 94, pp. 6371.
    41. 41)
      • 41. Yoo, S.J., Kim, T.-H.: ‘Predesignated fault-tolerant formation tracking quality for networked uncertain nonholonomic mobile robots in the presence of multiple faults’, Automatica, 2017, 77, pp. 380387.
    42. 42)
      • 42. Wang, R., Zhang, H., Wang, J.: ‘Linear parameter-varying-based fault-tolerant controller design for a class of over-actuated non-linear systems with applications to electric vehicles’, IET Control Theory Applic., 2014, 8, (9), pp. 705717.
    43. 43)
      • 43. Xu, B., Qi, R., Jiang, B., et al: ‘Nussbaum gain adaptive fault tolerant control for hypersonic vehicles with uncertain parameters and actuator faults’, IFAC-PapersOnLine, 2017, 50, (1), pp. 52565262.
    44. 44)
      • 44. Shen, Z., Ma, Y., Song, Y.: ‘Robust adaptive fault-tolerant control of mobile robots with varying center of mass’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 24192428.
    45. 45)
      • 45. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, Englewood Cliffs, NJ, 1996).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5492
Loading

Related content

content/journals/10.1049/iet-cta.2018.5492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address