access icon free Finite-time stabilisation for a class of time-delayed Markovian jumping systems with conic non-linearities

The finite-time stabilisation for a class of time-delayed Markovian jumping systems with conic nonlinearities is studied. The authors aim to design a suitable control law to stabilise the closed-loop system during a specified finite time. An appropriate Lyapunov–Krasovskii functional method is given to ensure the existence of finite-time stabilisation controller and the relevant sufficient conditions have been formulated in the form of linear matrix inequalities. Finally, a simulation example is given to show the effectiveness of the proposed design approach.

Inspec keywords: linear matrix inequalities; control system synthesis; delays; closed loop systems; nonlinear control systems; uncertain systems; asymptotic stability; Markov processes; stochastic systems; Lyapunov methods

Other keywords: linear matrix inequalities; Lyapunov–Krasovskii functional method; control law; time-delayed Markovian jumping systems; finite-time stabilisation controller; closed-loop system; conic nonlinearities

Subjects: Control system analysis and synthesis methods; Stability in control theory; Algebra; Markov processes; Distributed parameter control systems; Nonlinear control systems; Time-varying control systems

References

    1. 1)
      • 21. Shen, H., Zhu, Y., Zhang, L., et al: ‘Extended dissipative state estimation for Markov jump neural networks with unreliable links’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (2), pp. 346358.
    2. 2)
      • 19. Yuan, C., Mao, X.: ‘Robust stability and controllability of stochastic differential delay equations with Markovian switching’, Automatica, 2004, 40, (3), pp. 343354.
    3. 3)
      • 37. Rezaee, H., Abdollahi, F.: ‘Consensus problem in high-order multiagent systems with Lipschitz nonlinearities and jointly connected topologies’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (5), pp. 741748.
    4. 4)
      • 22. Li, H., Wang, L., Du, H., et al: ‘Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay’, IEEE Trans. Fuzzy Syst., 2007, 25, (3), pp. 642652.
    5. 5)
      • 18. Niu, Y., Ho, D.W.C.: ‘Design of sliding mode control subject to packet losses’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 26232628.
    6. 6)
      • 36. Zemouche, A., Boutayeb, M.: ‘Observer design for Lipschitz nonlinear systems: the discrete-time case’, IEEE Trans. Circuits Syst II: Express Briefs., 2006, 131, (53), pp. 777781.
    7. 7)
      • 17. Wang, Y., Xia, Y., Shen, H., et al: ‘SMC design for robust stabilization of nonlinear Markovian jump singular systems’, IEEE Trans. Autom. Control, 2017, 63, (1), pp. 219224.
    8. 8)
      • 40. Liu, Y., Ma, Y., Wang, Y.: ‘Reliable sliding mode finite-time control for discrete-time singular Markovian jump systems with sensor fault and randomly occurring nonlinearities’, Int. J. Control, DOI: 10.1002/rnc.3872.
    9. 9)
      • 5. Xiang, W., Tran, H.D., Johnson, T.T.: ‘Robust exponential stability and disturbance attenuation for discrete-time switched systems under arbitrary switching’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 14501456.
    10. 10)
      • 44. Abdallah, C.T., Amato, F., Ariola, M., et al: ‘Application of finite-time stability concepts to the control of atm networks’. Proc. the 40th Allerton Conf. Comm., Control and Computers, 2003, pp. 10711079.
    11. 11)
      • 9. Xiang, W., Johnson, T.T.: ‘Event-triggered control for continuous-time switched linear systems’, IET Control Theory Appl., 2017, 11, (11), pp. 16941703.
    12. 12)
      • 43. Frank, A., Filippo, S., Dorato, P.: ‘Short-time parameter optimization with flight control application’, Automatica, 1974, 10, (4), pp. 425430.
    13. 13)
      • 26. Vera, J.C., Rivera, J.C., Peña, J., et al: ‘A primal–dual symmetric relaxation for homogeneous conic systems’, J. Complexity, 2007, 23, (2), pp. 245261.
    14. 14)
      • 20. Shi, P., Li, F., Wu, L., et al: ‘Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (9), pp. 21012114.
    15. 15)
      • 24. Lu, J., Cao, J., Ho, D.W.C.: ‘Adaptive stabilization and synchronization for chaotic lur'e systems with time-varying delay’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (5), pp. 13471356.
    16. 16)
      • 8. Xiang, W., Tran, H.D., Johnson, T.T.: ‘Output reachable set estimation for switched linear systems and its application in safety verification’, IEEE Trans. Autom. Control, 2017, 62, (10), pp. 53805387.
    17. 17)
      • 10. Feng, X., Loparo, K.A., Ji, Y., et al: ‘Stochastic stability properties of jump linear systems’, IEEE Trans. Autom. Control, 1992, 37, (1), pp. 3853.
    18. 18)
      • 46. Xiang, W., Zhai, G., Briat, C.: ‘Stability analysis for lti control systems with controller failures and its application in failure tolerant control’, IEEE Trans. Autom. Control, 2016, 61, (3), pp. 811816.
    19. 19)
      • 1. Wang, G., Zhang, Q., Yang, C.: ‘Fault-tolerant control of Markovian jump systems via a partially mode-available but unmatched controller’, J. Franklin Isnt., 2017, 354, (17), pp. 77177731.
    20. 20)
      • 3. Cheng, J., Ju, H.P., Liu, Y., et al: ‘Finite-time H fuzzy control of nonlinear Markovian jump delayed systems with partly uncertain transition descriptions’, Fuzzy Sets Syst., 2016, 314, pp. 99115.
    21. 21)
      • 29. Hendi, S.H., Panah, B.E., Panahiyan, S.: ‘Magnetic solutions in Einstein-massive gravity with linear and nonlinear fields’, Eur. Phys. J. C, 2018, 78, pp. 432, DOI: 10.1140/epjc/s10052-018-5914-x.
    22. 22)
      • 45. Zhai, G., Chen, N., Gui, W.: ‘Design of quantised dynamic output feedback for decentralised Hα control systems’, IET Control Theory Appl., 2013, 7, (10), pp. 14081414.
    23. 23)
      • 12. Zhu, Q., Xi, F., Li, X.: ‘Robust exponential stability of stochastically nonlinear jump systems with mixed time delays’, J. Optimiz. Theory Appl., 2012, 154, (1), pp. 154174.
    24. 24)
      • 35. Song, J., He, S.: ‘Finite-time robust passive control for a class of uncertain Lipschitz nonlinear systems with time-delays’, Neurocomput., 2015, 159, (2), pp. 275281.
    25. 25)
      • 38. He, S., Ai, Q., Ren, C., et al: ‘Finite-time resilient controller design of a class of uncertain nonlinear systems with time-delays under asynchronous switching’, IEEE Trans. Syst. Man Cybern. Syst., 2018, pp. 16, DOI: 10.1109/TSMC.2018.2798644.
    26. 26)
      • 31. He, S., Song, J., Liu, F.: ‘Robust finite-time bounded controller design of time-delay conicnonlinear systems using sliding mode control strategy’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (11), pp. 18631873, DOI: 10.1109/TSMC.2017.2695483.
    27. 27)
      • 11. Mao, X.: ‘Stability of stochastic differential equations with Markovian switching’, Stoch. Proc. Appl., 1999, 79, (1), pp. 4567.
    28. 28)
      • 30. He, S., Song, J.: ‘Finite-time sliding mode control design for a class of uncertain conic nonlinear systems’, IEEE/CAA J. Autom. Sin., 2017, 4, (4), pp. 809816.
    29. 29)
      • 42. Mastellone, S., Abdallah, C.T., Dorato, P.: ‘Stability and finite-time stability analysis of discrete-time nonlinear networked control systems’. Proc. the 2005 American Control, Conf., Portland, OR, U.S.A., 2005, pp. 12391244.
    30. 30)
      • 16. Zhang, Y., Xu, S., Zou, Y., et al: ‘Delay-dependent robust stabilization for uncertain discrete-time fuzzy Markovian jump systems with mode-dependent time delays’, Fuzzy Sets Syst., 2011, 164, (1), pp. 6681.
    31. 31)
      • 7. Zhai, G., Huang, C.: ‘A note on basic consensus problems in multi-agent systems with switching interconnection graphs’, Int. J. Control, 2015, 88, (3), pp. 631639.
    32. 32)
      • 25. Yaz, E.E., Jeong, C.S, Bahakeem, A., et al: ‘Nonlinear observer design with general criteria’. Proc. the 2005 American Control Conf., Portland, OR, U.S.A., 2005, pp. 36363640.
    33. 33)
      • 13. Kao, Y., Yang, T., Park, Ju.H.: ‘Exponential stability of switched Markovian jumping neutral-type systems with generally incomplete transition rates’, Int. J. Robust Nonlinear, 2018, 28, (5), pp. 15831596.
    34. 34)
      • 27. Elbsat, M.N., Yaz, E.E.: ‘Robust and resilient finite-time control of a class of discrete-time nonlinear systems’, Proc. the 18th IFAC World Congress, 2011, 44, (1), pp. 64546459.
    35. 35)
      • 41. Sun, H., Hou, L., Zong, G.: ‘Finite time output tracking control for second-order systems with power integrators via non-singular terminal sliding mode method’, Automatica, 2017, 28, (2), pp. 381402, DOI: 10.1016/j.automatica.2017.12.046.
    36. 36)
      • 28. Haghighat, H., Zeng, B.: ‘Bilevel conic transmission expansion planning’, IEEE Trans. Power Syst., 2018, 33, (4), pp. 46404642.
    37. 37)
      • 23. He, W., Chen, Y., Yin, Z.: ‘Adaptive neural network control of an uncertain robot with full state constraints’, IEEE Trans. Cybern., 2016, 46, (3), pp. 620629.
    38. 38)
      • 6. Xiang, W., Xiao, J., Zhai, G.: ‘Dissipativity and dwell time specifications of switched discrete-time systems and its applications in H and robust passive control’, Inf. Sci., 2015, 320, (1), pp. 206222.
    39. 39)
      • 4. Wang, G., Li, Z., Zhang, Q., et al: ‘Robust finite-time stability and stabilization of uncertain Markovian jump systems with time-varying delay’, Appl. Math. Comput., 2017, 293, (15), pp. 377393.
    40. 40)
      • 32. Elbsat, M.N., Yaz, E.E.: ‘Robust and resilient finite-time control of a class of continuous-time nonlinear systems’. Proc. the 7th IFAC Symp. on Robust Control Design, Aalborg, Denmark, 2012, pp. 1520.
    41. 41)
      • 15. Wang, Z., Liu, Y., Liu, X.: ‘Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16561662.
    42. 42)
      • 33. Feng, F., Jeong, C.S., Yaz, E.E., et al: ‘Robust controller design with general criteria for uncertain conic nonlinear systems with disturbances’. Proc. the 2013 American Control, Conf., Portland, OR, U.S.A., 2013, pp. 58695874.
    43. 43)
      • 14. Zhang, L., Lam, J.: ‘Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16951701.
    44. 44)
      • 39. Amato, F., DeTommasi, G., Pironti, A.: ‘Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems’, Automatica, 2003, 49, (8), pp. 25462550.
    45. 45)
      • 34. Elbsat, M.N., Yaz, E.E.: ‘Robust and resilient finite-time bounded control of discrete-time uncertain nonlinear systems’, Automatica, 2013, 49, (7), pp. 22922296.
    46. 46)
      • 2. Cheng, J., Park, J.H., Zhang, L., et al: ‘An asynchronous operation approach to event-triggered control for fuzzy Markovian jump systems with general switching policies’, IEEE Trans. Fuzzy Syst., 2018, 26, (1), pp. 618.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5489
Loading

Related content

content/journals/10.1049/iet-cta.2018.5489
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading