http://iet.metastore.ingenta.com
1887

FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems

FxTDO-based non-singular terminal sliding mode control for second-order uncertain systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a composite robust control approach with non-singular terminal sliding mode control and fixed-time disturbance observer (FxTDO) is proposed for a class of second-order non-linear systems in the presence of matched uncertain disturbances. A bi-limit-weighted homogeneous FxTDO is designed based on the efficient utilisation of power functions obtained by the differentiation error amplification strategy. The FxTDO enjoys a fast convergence rate and simple parameters tuning process. By introducing the disturbance estimation to directly compensate the total disturbance in the composite control law, only a particular small gain-based discontinuous control term is needed to guarantee the existence of sliding mode, and chattering phenomenon can be attenuated. The simulation results revealed the effectiveness of the proposed method.

References

    1. 1)
      • 1. Utkin, V.I.: ‘Sliding modes in control and optimization’ (Springer Verlag, Berlin, Heidelberg, 1992).
    2. 2)
      • 2. Feng, Y., Yu, X., Man, Z.: ‘Non-singular terminal sliding mode control of rigid manipulators’, Automatica, 2002, 38, (12), pp. 21592167.
    3. 3)
      • 3. Yu, S., Yu, X., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964.
    4. 4)
      • 4. Feng, Y., Yu, X., Man, Z.: ‘On nonsingular terminal sliding-mode control of nonlinear systems’, Automatica, 2013, 49, (6), pp. 17151722.
    5. 5)
      • 5. Zuo, Z.: ‘Non-singular fixed-time terminal sliding mode control of non-linear systems’, IET Control Theory Appl., 2015, 9, (4), pp. 545552.
    6. 6)
      • 6. Al-Ghanimi, A., Zheng, J., Man, Z.: ‘A fast non-singular terminal sliding mode control based on perturbation estimation for piezoelectric actuators systems’, Int. J. Control, 2017, 90, (3), pp. 480491.
    7. 7)
      • 7. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9–10), pp. 924941.
    8. 8)
      • 8. Kamal, S., Moreno, J.A., Chalanga, A., et al: ‘Continuous terminal sliding-mode controller’, Automatica, 2016, 69, pp. 308314.
    9. 9)
      • 9. Utkin, V.I., Poznyak, A.S.: ‘Adaptive sliding mode control with application to super-twist algorithm: equivalent control method’, Automatica, 2013, 49, (1), pp. 3947.
    10. 10)
      • 10. Edwards, C., Shtessel, Y.B.: ‘Adaptive continuous higher order sliding mode control’, Automatica, 2016, 65, pp. 183190.
    11. 11)
      • 11. Yang, F., Wei, C., Cui, N., et al: ‘Adaptive generalized super-twisting algorithm based guidance law design’. Proc. 14th Int. Workshop on Variable Structure Systems (VSS), Nanjing, China, June 2016, pp. 4752.
    12. 12)
      • 12. Chen, W.H., Yang, J., Guo, L., et al: ‘Disturbance-observer-based control and related methods – an overview’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 10831095.
    13. 13)
      • 13. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding modes control and observation’ (Springer Verlag, New York, 2014).
    14. 14)
      • 14. Li, S., Zhou, M., Yu, X.: ‘Design and implementation of terminal sliding mode control method for PMSM speed regulation system’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 18791891.
    15. 15)
      • 15. Wang, H., Li, S., Lan, Q., et al: ‘Continuous terminal sliding mode control with extended state observer for PMSM speed regulation system’, Trans. Inst. Meas. Control, 2017, 39, (8), pp. 11951204.
    16. 16)
      • 16. Yang, J., Li, S., Su, J., et al: ‘Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances’, Automatica, 2013, 49, (7), pp. 22872291.
    17. 17)
      • 17. Chen, M., Wu, Q.X., Cui, R.X.: ‘Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems’, ISA Trans.., 2013, 52, (2), pp. 198206.
    18. 18)
      • 18. Mobayen, S., Javadi, S.: ‘Disturbance observer and finite-time tracker design of disturbed third-order nonholonomic systems using terminal sliding mode’, J. Vib. Control, 2017, 23, (2), pp. 181189.
    19. 19)
      • 19. Bayat, F., Mobayen, S., Javadi, S.: ‘Finite-time tracking control of nth-order chained-form non-holonomic systems in the presence of disturbances’, ISA Trans.., 2016, 63, pp. 7883.
    20. 20)
      • 20. Cruz-Zavala, E., Moreno, J.A., Fridman, L.M.: ‘Uniform robust exact differentiator’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27272733.
    21. 21)
      • 21. Andrieu, V., Praly, L., Astolfi, A.: ‘Homogeneous approximation, recursive observer design, and output feedback’, SIAM J. Control Optim., 2008, 47, (4), pp. 18141850.
    22. 22)
      • 22. Polyakov, A., Fridman, L.: ‘Stability notions and Lyapunov functions for sliding mode control systems’, J. Franklin Inst., 2014, 351, (4), pp. 18311865.
    23. 23)
      • 23. Bernuau, E., Efimov, D., Perruquetti, W., et al: ‘On homogeneity and its application in sliding mode control’, J. Franklin Inst., 2014, 351, (4), pp. 18661901.
    24. 24)
      • 24. Mincarelli, D., Pisano, A., Floquet, T., et al: ‘Uniformly convergent sliding mode-based observation for switched linear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (7), pp. 15491564.
    25. 25)
      • 25. Angulo, M.T., Moreno, J.A., Fridman, L.: ‘Robust exact uniformly convergent arbitrary order differentiator’, Automatica, 2013, 49, (8), pp. 24892495.
    26. 26)
      • 26. Ni, J., Liu, L., Chen, M., et al: ‘Fixed-time disturbance observer design for Brunovsky system’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (3), pp. 341345.
    27. 27)
      • 27. Basin, M., Yu, P., Shtessel, Y.: ‘Finite- and fixed-time differentiators utilising HOSM techniques’, IET Control Theory Appl., 2017, 11, (8), pp. 11441152.
    28. 28)
      • 28. Zhao, Z.L., Guo, B.Z.: ‘A nonlinear extended state observer based on fractional power functions’, Automatica, 2017, 81, pp. 286296.
    29. 29)
      • 29. Gao, W., Hung, J.C.: ‘Variable structure control of nonlinear systems: a new approach’, IEEE Trans. Ind. Electron., 1993, 40, (1), pp. 4555.
    30. 30)
      • 30. Perruquetti, W., Floquet, T., Moulay, E.: ‘Finite-time observers: application to secure communication’, IEEE Trans. Autom. Control, 2008, 53, (1), pp. 356360.
    31. 31)
      • 31. Rosier, L.: ‘Homogeneous Lyapunov function for homogeneous continuous vector field’, Syst. Control Lett., 1992, 19, (6), pp. 467473.
    32. 32)
      • 32. Shahnazi, R., Shanechi, H.M., Pariz, N.: ‘Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 138147.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5455
Loading

Related content

content/journals/10.1049/iet-cta.2018.5455
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address