Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robust deadlock avoidance control for AMSs with assembly operations embedded in flexible routes using Petri nets

Deadlock-free supervisory control for automated manufacturing systems (AMSs) has been a popular research subject. However, for numerous researchers, their studies are merely practicable on the assumption that resources cannot fail. In practice, resource failures can occur unexpectedly. In this study, the authors take into consideration deadlock and blocking problems in systems with assembly operations embedded in flexible routes. Their objective is to develop a robust supervisor that controls resource allocation and selects flexible routes such that stagnant parts requiring failed resources do not block the movement of parts not necessarily requiring failed resources. That is to say, it must ensure that parts not necessarily requiring any failed resource can continue their operations. The proposed policy tries to take full advantage of the shared resource capacity to improve systems' performance. By modelling AMSs with Petri nets, their robust supervisor predicts in advance whether the currently-available resources are sufficient to support a token to advance into the desired destination in a single process. The method is achieved in an online and distributed way and avoids enumerating states. At last, several simulation examples show the correctness of their proposed method.

References

    1. 1)
      • 24. Lawley, M.A.: ‘Control of deadlock and blocking for production systems with unreliable resources’, Int. J. Prod. Res., 2002, 40, (17), pp. 45634582.
    2. 2)
      • 25. Lawley, M.A., Sulistyono, W.: ‘Robust supervisory control policies for manufacturing systems with unreliable resources’, IEEE Trans. Robot. Autom., 2002, 18, (3), pp. 346359.
    3. 3)
      • 5. Ezpeleta, J., Colom, J.M., Martinez, J.: ‘A Petri net based deadlock prevention policy for flexible manufacturing systems’, IEEE Trans. Robot. Autom., 1995, 11, (2), pp. 173184.
    4. 4)
      • 11. Li, Z.W., Zhang, J., Zhao, M.: ‘Liveness-enforcing supervisor design for a class of generalised Petri net models of flexible manufacturing systems’, IET Control Theory Appl., 2007, 1, (4), pp. 955967.
    5. 5)
      • 26. Wang, S.Y., Chew, S.F., Lawley, M.A.: ‘Guidelines for implementing robust supervisors in flexible manufacturing systems’, Int. J. Prod. Res., 2008, 47, (23), pp. 64996524.
    6. 6)
      • 38. Wu, Y.C., Xing, K.Y., Luo, J.C., et al: ‘Robust deadlock control for automated manufacturing systems with an unreliable resource’, Inf. Sci., 2016, 346–347, (10), pp. 1728.
    7. 7)
      • 19. Liu, G.Y., Li, Z.W.: ‘General mixed integer programming-based liveness test for system of sequential systems with shared resources nets’, IET Control Theory Appl., 2010, 4, (12), pp. 28672878.
    8. 8)
      • 8. Hu, H.S., Zhou, M.C., Li, Z.W., et al: ‘Deadlock-free control of automated manufacturing systems with flexible routes and assembly operations using Petri nets’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 109121.
    9. 9)
      • 35. Luo, J.C., Xing, K.Y., Wu, Y.C.: ‘Robust supervisory control policy for automated manufacturing systems with a single unreliable resource’, Trans. Inst. Meas. Control, 2017, 39, (6), pp. 793806.
    10. 10)
      • 40. Yue, H., Xing, K.Y., Hu, Z.: ‘Robust supervisory control for avoiding deadlock in automated manufacturing systems with unreliable resources’, Int. J. Prod. Res., 2014, 52, (6), pp. 15731591.
    11. 11)
      • 37. Wang, F., Xing, K.Y., Zhou, M.C., et al: ‘A robust deadlock prevention control for automated manufacturing systems with unreliable resources’, Inf. Sci., 2016, 345, (1), pp. 243256.
    12. 12)
      • 14. Li, Z.W., Wu, N.Q., Zhou, M.C.: ‘Deadlock control of automated manufacturing systems based on Petri nets – a literature review’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2012, 42, (4), pp. 437462.
    13. 13)
      • 7. Hu, H.S., Li, Z.W.: ‘Synthesis of liveness enforcing supervisor for automated manufacturing systems using insufficiently marked siphons’, J. Intell. Manuf., 2010, 21, (4), pp. 555567.
    14. 14)
      • 9. Hu, H.S., Su, R., Zhou, M.C., et al: ‘Polynomially complex synthesis of distributed supervisors for large scale AMS using Petri nets’, IEEE Trans. Control Syst. Tech., 2015, 24, (5), pp. 16101622.
    15. 15)
      • 6. Han, L.B., Zhou, Y., Xing, K.M.C., et al: ‘Efficient optimal deadlock control of flexible manufacturing systems’, IET Control Theory Appl., 2016, 10, (10), pp. 11811186.
    16. 16)
      • 22. Cheng, Y., Hu, H.S., Liu, Y.: ‘Robust supervisor synthesis for automated manufacturing systems using Petri nets’. Proc. IEEE Int. Conf. on Automation Science and Engineering, Gothenburg, Sweden, August 2015, pp. 10291035.
    17. 17)
      • 16. Liu, G.J., Jiang, C.J., Zhou, M.C.: ‘Two simple deadlock prevention policies for S3PR based on key-resource/operation-place pairs’, IEEE Trans. Autom. Sci. Eng., 2010, 7, (4), pp. 945957.
    18. 18)
      • 27. Chew, S.F., Wang, S.Y., Lawley, M.A.: ‘Robust supervisory control for product routings with multiple unreliable resources’, IEEE Trans. Autom. Sci. Eng., 2009, 6, (1), pp. 195200.
    19. 19)
      • 15. Li, S.Y., An, A.M., Wang, Y., et al: ‘Design of liveness-enforcing supervisors with simpler structures for deadlock-free operations in flexible manufacturing systems using necessary siphons’, J. Intell. Manuf., 2013, 24, (6), pp. 11571173.
    20. 20)
      • 4. Dong, L.D., Zhu, D., Zhu, C.C., et al: ‘Region minimised monitor design for deadlock-prevention of S4PR nets’, IET Control Theory Appl., 2014, 8, (13), pp. 12241237.
    21. 21)
      • 23. Chew, S.F., Lawley, M.A.: ‘Robust supervisory control for production systems with multiple unreliable resources’, IEEE Trans. Autom. Sci. Eng., 2006, 3, (3), pp. 309323.
    22. 22)
      • 34. Liu, G.Y., Li, Z.W., Barkaoui, K., et al: ‘Robustness of deadlock control for a class of Petri nets with unreliable resources’, Inf. Sci., 2013, 235, (20), pp. 259279.
    23. 23)
      • 29. Du, N., Hu, H.S.: ‘A robust prevention method for automated manufacturing systems with unreliable resources using Petri nets’, IEEE Access, 2018, 6, pp. 7859878608.
    24. 24)
      • 20. Tricas, F., Martinez, J.: ‘An extension of the liveness theory for concurrent sequential processes competing for shared resources’. Proc. IEEE Int. Conf. on Systems, Man and Cybernetic. Intellectual Systems for the 21st Century, Vancouver, Canada, October 1995, pp. 30353040.
    25. 25)
      • 12. Li, Z.W., Zhou, M.C., Uzam, M.: ‘Deadlock control policy for a class of Petri nets without complete siphon enumeration’, IET Control Theory Appl., 2007, 1, (6), pp. 15941605.
    26. 26)
      • 13. Li, Z.W., Shpitalni, M.: ‘Smart deadlock prevention policy for flexible manufacturing systems using Petri nets’, IET Control Theory Appl., 2009, 3, (3), pp. 362374.
    27. 27)
      • 31. Hsieh, F.S.: ‘Analysis of flexible assembly processes based on structural decomposition of Petri nets’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2007, 37, (5), pp. 792803.
    28. 28)
      • 39. Yue, H., Xing, K.Y.: ‘Robust supervisory control for avoiding deadlocks in automated manufacturing systems with one specified unreliable resource’, Trans. Inst. Meas. Control, 2014, 36, (4), pp. 435444.
    29. 29)
      • 42. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Deadlock and blockage control for manufacturing systems with failure-prone workstations’, IET Control Theory Appl., 2016, 10, (8), pp. 939946.
    30. 30)
      • 33. Hsieh, F.S.: ‘Robustness analysis of non-ordinary Petri nets for flexible assembly/disassembly processes based on structural decomposition’, Int. J. Control, 2011, 84, (3), pp. 496510.
    31. 31)
      • 41. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Robust supervision using shared-buffers in automated manufacturing systems with unreliable resource’, Comput. Ind. Eng., 2015, 83, pp. 139150.
    32. 32)
      • 3. Chen, H.F., Wu, N.Q., Zhou, M.C.: ‘A novel method for deadlock prevention of AMS by using resource-oriented Petri nets’, Inf. Sci., 2016, 363, (1), pp. 178189.
    33. 33)
      • 36. Wang, S.Y., Chew, S.F., Lawley, M.A.: ‘Using shared resources capacity for robust control of failure prone manufacturing systems’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2008, 38, (3), pp. 605627.
    34. 34)
      • 1. Basile, F., Pasquale, C., Jolanda, C.: ‘A hybrid model of complex automated warehouse systems – part II: analysis and experimental results’, IEEE Trans. Autom. Sci. Eng., 2012, 9, (4), pp. 654668.
    35. 35)
      • 2. Chao, D.Y.: ‘Conservative control policy for weakly dependent siphons in S3PR based on elementary siphons’, IET Control Theory Appl., 2010, 4, (7), pp. 12981302.
    36. 36)
      • 43. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Petri-net-based robust supervisory control of automated manufacturing systems’, Control Eng. Pract., 2016, 54, pp. 176189.
    37. 37)
      • 10. Huang, Y.S., Pan, Y.L.: ‘An improved maximally permissive deadlock prevention policy based on the theory of regions and reduction approach’, IET Control Theory Appl., 2011, 5, (9), pp. 10691078.
    38. 38)
      • 30. Feng, Y.X., Xing, K.Y., Gao, Z.X.: ‘Transition cover-based robust Petri net controllers for automated manufacturing systems with a type of unreliable resources’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (11), pp. 30193029.
    39. 39)
      • 21. Uzam, M., Li, Z.W., Gelen, G., et al: ‘A divide-and-conquer-method for the synthesis of liveness enforcing supervisors for flexible manufacturing systems’, Int. J. Prod. Res., 2016, 27, (5), pp. 11111129.
    40. 40)
      • 18. Liu, G.J.: ‘Complexity of the deadlock problem for Petri nets modelling resource allocation systems’, Inf. Sci., 2016, 363, pp. 190197.
    41. 41)
      • 17. Liu, G.J., Jiang, C.J., Zhou, M.C.: ‘Improved sufficient condition for the controllability of weakly dependent siphons in system of simple sequential processes with resources’, IET Control Theory Appl., 2011, 5, (9), pp. 10591068.
    42. 42)
      • 28. Chew, S.F., Wang, S.Y., Lawley, M.A.: ‘Resource failure and blockage control for production systems’, Int. J. Comput. Integr. Manuf., 2011, 24, (3), pp. 229241.
    43. 43)
      • 32. Hsieh, F.S.: ‘Robustness analysis of non-ordinary Petri nets for flexible assembly systems’, Int. J. Control, 2010, 83, (5), pp. 928939.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5398
Loading

Related content

content/journals/10.1049/iet-cta.2018.5398
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address