http://iet.metastore.ingenta.com
1887

Robust deadlock avoidance control for AMSs with assembly operations embedded in flexible routes using Petri nets

Robust deadlock avoidance control for AMSs with assembly operations embedded in flexible routes using Petri nets

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Deadlock-free supervisory control for automated manufacturing systems (AMSs) has been a popular research subject. However, for numerous researchers, their studies are merely practicable on the assumption that resources cannot fail. In practice, resource failures can occur unexpectedly. In this study, the authors take into consideration deadlock and blocking problems in systems with assembly operations embedded in flexible routes. Their objective is to develop a robust supervisor that controls resource allocation and selects flexible routes such that stagnant parts requiring failed resources do not block the movement of parts not necessarily requiring failed resources. That is to say, it must ensure that parts not necessarily requiring any failed resource can continue their operations. The proposed policy tries to take full advantage of the shared resource capacity to improve systems' performance. By modelling AMSs with Petri nets, their robust supervisor predicts in advance whether the currently-available resources are sufficient to support a token to advance into the desired destination in a single process. The method is achieved in an online and distributed way and avoids enumerating states. At last, several simulation examples show the correctness of their proposed method.

References

    1. 1)
      • 1. Basile, F., Pasquale, C., Jolanda, C.: ‘A hybrid model of complex automated warehouse systems – part II: analysis and experimental results’, IEEE Trans. Autom. Sci. Eng., 2012, 9, (4), pp. 654668.
    2. 2)
      • 2. Chao, D.Y.: ‘Conservative control policy for weakly dependent siphons in S3PR based on elementary siphons’, IET Control Theory Appl., 2010, 4, (7), pp. 12981302.
    3. 3)
      • 3. Chen, H.F., Wu, N.Q., Zhou, M.C.: ‘A novel method for deadlock prevention of AMS by using resource-oriented Petri nets’, Inf. Sci., 2016, 363, (1), pp. 178189.
    4. 4)
      • 4. Dong, L.D., Zhu, D., Zhu, C.C., et al: ‘Region minimised monitor design for deadlock-prevention of S4PR nets’, IET Control Theory Appl., 2014, 8, (13), pp. 12241237.
    5. 5)
      • 5. Ezpeleta, J., Colom, J.M., Martinez, J.: ‘A Petri net based deadlock prevention policy for flexible manufacturing systems’, IEEE Trans. Robot. Autom., 1995, 11, (2), pp. 173184.
    6. 6)
      • 6. Han, L.B., Zhou, Y., Xing, K.M.C., et al: ‘Efficient optimal deadlock control of flexible manufacturing systems’, IET Control Theory Appl., 2016, 10, (10), pp. 11811186.
    7. 7)
      • 7. Hu, H.S., Li, Z.W.: ‘Synthesis of liveness enforcing supervisor for automated manufacturing systems using insufficiently marked siphons’, J. Intell. Manuf., 2010, 21, (4), pp. 555567.
    8. 8)
      • 8. Hu, H.S., Zhou, M.C., Li, Z.W., et al: ‘Deadlock-free control of automated manufacturing systems with flexible routes and assembly operations using Petri nets’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 109121.
    9. 9)
      • 9. Hu, H.S., Su, R., Zhou, M.C., et al: ‘Polynomially complex synthesis of distributed supervisors for large scale AMS using Petri nets’, IEEE Trans. Control Syst. Tech., 2015, 24, (5), pp. 16101622.
    10. 10)
      • 10. Huang, Y.S., Pan, Y.L.: ‘An improved maximally permissive deadlock prevention policy based on the theory of regions and reduction approach’, IET Control Theory Appl., 2011, 5, (9), pp. 10691078.
    11. 11)
      • 11. Li, Z.W., Zhang, J., Zhao, M.: ‘Liveness-enforcing supervisor design for a class of generalised Petri net models of flexible manufacturing systems’, IET Control Theory Appl., 2007, 1, (4), pp. 955967.
    12. 12)
      • 12. Li, Z.W., Zhou, M.C., Uzam, M.: ‘Deadlock control policy for a class of Petri nets without complete siphon enumeration’, IET Control Theory Appl., 2007, 1, (6), pp. 15941605.
    13. 13)
      • 13. Li, Z.W., Shpitalni, M.: ‘Smart deadlock prevention policy for flexible manufacturing systems using Petri nets’, IET Control Theory Appl., 2009, 3, (3), pp. 362374.
    14. 14)
      • 14. Li, Z.W., Wu, N.Q., Zhou, M.C.: ‘Deadlock control of automated manufacturing systems based on Petri nets – a literature review’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2012, 42, (4), pp. 437462.
    15. 15)
      • 15. Li, S.Y., An, A.M., Wang, Y., et al: ‘Design of liveness-enforcing supervisors with simpler structures for deadlock-free operations in flexible manufacturing systems using necessary siphons’, J. Intell. Manuf., 2013, 24, (6), pp. 11571173.
    16. 16)
      • 16. Liu, G.J., Jiang, C.J., Zhou, M.C.: ‘Two simple deadlock prevention policies for S3PR based on key-resource/operation-place pairs’, IEEE Trans. Autom. Sci. Eng., 2010, 7, (4), pp. 945957.
    17. 17)
      • 17. Liu, G.J., Jiang, C.J., Zhou, M.C.: ‘Improved sufficient condition for the controllability of weakly dependent siphons in system of simple sequential processes with resources’, IET Control Theory Appl., 2011, 5, (9), pp. 10591068.
    18. 18)
      • 18. Liu, G.J.: ‘Complexity of the deadlock problem for Petri nets modelling resource allocation systems’, Inf. Sci., 2016, 363, pp. 190197.
    19. 19)
      • 19. Liu, G.Y., Li, Z.W.: ‘General mixed integer programming-based liveness test for system of sequential systems with shared resources nets’, IET Control Theory Appl., 2010, 4, (12), pp. 28672878.
    20. 20)
      • 20. Tricas, F., Martinez, J.: ‘An extension of the liveness theory for concurrent sequential processes competing for shared resources’. Proc. IEEE Int. Conf. on Systems, Man and Cybernetic. Intellectual Systems for the 21st Century, Vancouver, Canada, October 1995, pp. 30353040.
    21. 21)
      • 21. Uzam, M., Li, Z.W., Gelen, G., et al: ‘A divide-and-conquer-method for the synthesis of liveness enforcing supervisors for flexible manufacturing systems’, Int. J. Prod. Res., 2016, 27, (5), pp. 11111129.
    22. 22)
      • 22. Cheng, Y., Hu, H.S., Liu, Y.: ‘Robust supervisor synthesis for automated manufacturing systems using Petri nets’. Proc. IEEE Int. Conf. on Automation Science and Engineering, Gothenburg, Sweden, August 2015, pp. 10291035.
    23. 23)
      • 23. Chew, S.F., Lawley, M.A.: ‘Robust supervisory control for production systems with multiple unreliable resources’, IEEE Trans. Autom. Sci. Eng., 2006, 3, (3), pp. 309323.
    24. 24)
      • 24. Lawley, M.A.: ‘Control of deadlock and blocking for production systems with unreliable resources’, Int. J. Prod. Res., 2002, 40, (17), pp. 45634582.
    25. 25)
      • 25. Lawley, M.A., Sulistyono, W.: ‘Robust supervisory control policies for manufacturing systems with unreliable resources’, IEEE Trans. Robot. Autom., 2002, 18, (3), pp. 346359.
    26. 26)
      • 26. Wang, S.Y., Chew, S.F., Lawley, M.A.: ‘Guidelines for implementing robust supervisors in flexible manufacturing systems’, Int. J. Prod. Res., 2008, 47, (23), pp. 64996524.
    27. 27)
      • 27. Chew, S.F., Wang, S.Y., Lawley, M.A.: ‘Robust supervisory control for product routings with multiple unreliable resources’, IEEE Trans. Autom. Sci. Eng., 2009, 6, (1), pp. 195200.
    28. 28)
      • 28. Chew, S.F., Wang, S.Y., Lawley, M.A.: ‘Resource failure and blockage control for production systems’, Int. J. Comput. Integr. Manuf., 2011, 24, (3), pp. 229241.
    29. 29)
      • 29. Du, N., Hu, H.S.: ‘A robust prevention method for automated manufacturing systems with unreliable resources using Petri nets’, IEEE Access, 2018, 6, pp. 7859878608.
    30. 30)
      • 30. Feng, Y.X., Xing, K.Y., Gao, Z.X.: ‘Transition cover-based robust Petri net controllers for automated manufacturing systems with a type of unreliable resources’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (11), pp. 30193029.
    31. 31)
      • 31. Hsieh, F.S.: ‘Analysis of flexible assembly processes based on structural decomposition of Petri nets’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2007, 37, (5), pp. 792803.
    32. 32)
      • 32. Hsieh, F.S.: ‘Robustness analysis of non-ordinary Petri nets for flexible assembly systems’, Int. J. Control, 2010, 83, (5), pp. 928939.
    33. 33)
      • 33. Hsieh, F.S.: ‘Robustness analysis of non-ordinary Petri nets for flexible assembly/disassembly processes based on structural decomposition’, Int. J. Control, 2011, 84, (3), pp. 496510.
    34. 34)
      • 34. Liu, G.Y., Li, Z.W., Barkaoui, K., et al: ‘Robustness of deadlock control for a class of Petri nets with unreliable resources’, Inf. Sci., 2013, 235, (20), pp. 259279.
    35. 35)
      • 35. Luo, J.C., Xing, K.Y., Wu, Y.C.: ‘Robust supervisory control policy for automated manufacturing systems with a single unreliable resource’, Trans. Inst. Meas. Control, 2017, 39, (6), pp. 793806.
    36. 36)
      • 36. Wang, S.Y., Chew, S.F., Lawley, M.A.: ‘Using shared resources capacity for robust control of failure prone manufacturing systems’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2008, 38, (3), pp. 605627.
    37. 37)
      • 37. Wang, F., Xing, K.Y., Zhou, M.C., et al: ‘A robust deadlock prevention control for automated manufacturing systems with unreliable resources’, Inf. Sci., 2016, 345, (1), pp. 243256.
    38. 38)
      • 38. Wu, Y.C., Xing, K.Y., Luo, J.C., et al: ‘Robust deadlock control for automated manufacturing systems with an unreliable resource’, Inf. Sci., 2016, 346–347, (10), pp. 1728.
    39. 39)
      • 39. Yue, H., Xing, K.Y.: ‘Robust supervisory control for avoiding deadlocks in automated manufacturing systems with one specified unreliable resource’, Trans. Inst. Meas. Control, 2014, 36, (4), pp. 435444.
    40. 40)
      • 40. Yue, H., Xing, K.Y., Hu, Z.: ‘Robust supervisory control for avoiding deadlock in automated manufacturing systems with unreliable resources’, Int. J. Prod. Res., 2014, 52, (6), pp. 15731591.
    41. 41)
      • 41. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Robust supervision using shared-buffers in automated manufacturing systems with unreliable resource’, Comput. Ind. Eng., 2015, 83, pp. 139150.
    42. 42)
      • 42. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Deadlock and blockage control for manufacturing systems with failure-prone workstations’, IET Control Theory Appl., 2016, 10, (8), pp. 939946.
    43. 43)
      • 43. Yue, H., Xing, K.Y., Hu, H.S., et al: ‘Petri-net-based robust supervisory control of automated manufacturing systems’, Control Eng. Pract., 2016, 54, pp. 176189.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5398
Loading

Related content

content/journals/10.1049/iet-cta.2018.5398
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address