access icon free Disturbance-observer-based antiswing control of underactuated crane systems via terminal sliding mode

In this study, based on the finite-time sliding mode control method, an antiswing control law is designed for the underactuated crane systems in two-dimensional space with external disturbance. The finite-time disturbance observer is utilised to estimate the external disturbance and develop the finite-time control law. The designed controller can regulate the trolley to the planned trajectory within a finite time in the presence of external disturbance. Then it can be shown that the proposed control approach can achieve precise trolley positioning and swing suppression. Simulation results are provided to show the satisfactory control performances of the presented control method in terms of working efficiency as well as robustness with respect to external disturbance.

Inspec keywords: control system synthesis; cranes; trajectory control; variable structure systems; trolleys; observers

Other keywords: precise trolley positioning; finite-time sliding mode control method; disturbance-observer-based antiswing control; swing suppression; finite-time control law; trolley regulation; antiswing control law; underactuated crane systems; two-dimensional space; external disturbance estimation; finite-time disturbance observer

Subjects: Spatial variables control; Control technology and theory (production); Simulation, modelling and identification; Control system analysis and synthesis methods; Vehicle mechanics; Multivariable control systems; Control applications to materials handling

References

    1. 1)
      • 22. Yu, W., Moreno-Armendariz, M.A., Rodriguez, F.O.: ‘Stable adaptive compensation with fuzzy CMAC for an overhead crane’, Inf. Sci., 2011, 181, (21), pp. 48954907.
    2. 2)
      • 15. Chwa, D.: ‘Nonlinear tracking control of 3D overhead cranes against the initial swing angle and the variation of payload weight’, IEEE Trans. Control Syst. Technol., 2009, 17, (4), pp. 876883.
    3. 3)
      • 5. Singer, N.C.: ‘Residual vibration reduction in computer controlled machines’. PhD thesis, Massachusetts Institute of Technology, Cambridge, USA, 1989.
    4. 4)
      • 19. Kamath, A.K., Singh, N.M., Kazi, F., et al: ‘Dynamics and control of 2D SpiderCrane: a controlled Lagrangian approach’. Proc. IEEE Conf. on Decision and Control, Atlanta, GA, USA, 2010, pp. 35963601.
    5. 5)
      • 23. Liu, D.T., Guo, W.P., Yi, J.Q.: ‘Dynamics and GA-based stable control for a class of underactuated mechanical systems’, Int. J. Control Autom. Syst., 2008, 6, (1), pp. 3543.
    6. 6)
      • 25. Li, S.H., Sun, H.B., Yang, J., et al: ‘Continuous finite-time output regulation for disturbed systems under mismatching condition’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 277282.
    7. 7)
      • 20. Sun, N., Fang, Y.C.: ‘New energy analytical results for the regulation of underactuated overhead cranes: an end-effector motion-based approach’, IEEE Trans. Ind. Electron., 2012, 59, (12), pp. 47234734.
    8. 8)
      • 35. Le, A.T., Lee, S.G.: ‘3D cooperative control of tower cranes using robust adaptive techniques’, J. Franklin Inst., 2017, 354, (18), pp. 83338357.
    9. 9)
      • 21. Park, M.S., Chwa, D., Hong, S.K.: ‘Anti-sway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 39723984.
    10. 10)
      • 30. Li, S.H., Tian, Y.P.: ‘Finite-time stability of cascaded time-varying systems’, Int. J. Control, 2007, 80, (4), pp. 646657.
    11. 11)
      • 27. Huang, J., Ri, S., Liu, L., et al: ‘Nonlinear disturbance observer-based dynamic surface control of mobile wheeled inverted pendulum’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 24002407.
    12. 12)
      • 33. Lee, S.G.: ‘Modeling and advanced sliding mode controls of crawler cranes considering wire rope elasticity and complicated operations’, Mech. Syst. Signal Process., 2018, 103, pp. 250263.
    13. 13)
      • 11. Masoud, Z.N., Nayfeh, A.H.: ‘Sway reduction on container cranes using delayed feedback controller’, Nonlinear Dyn., 2003, 34, (34), pp. 347358.
    14. 14)
      • 38. Sun, N., Yang, T., Chen, H., et al: ‘Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments’, IEEE Trans. Syst. Man Cybern. Syst., 2017, DOI: 10.1109/TSMC.2017.2765183.
    15. 15)
      • 8. Hong, K.T., Huh, C.D., Hong, K.S.: ‘Command shaping control for limiting the transient sway angle of crane systems’, Int. J. Control Autom. Syst., 2003, 1, (1), pp. 4353.
    16. 16)
      • 37. Sun, N., Fang, Y., Chen, H., et al: ‘Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments’, IEEE Trans. Syst., Man, Cybern, Syst., 2017, DOI: 10.1109/TSMC.2017.2700393.
    17. 17)
      • 16. Fang, Y., Dixon, W.E., Dawson, D.W., et al: ‘Nonlinear coupling control laws for an underactuated overhead crane system’, IEEE/ASME Trans. Mechatronics, 2003, 8, (3), pp. 418423.
    18. 18)
      • 6. Singhose, W., Seering, W., Singer, N.: ‘Residual vibration reduction using vector diagrams to generate shaped inputs’, ASME J. Mech. Design, 1994, 116, (2), pp. 654659.
    19. 19)
      • 3. Cook, G.: ‘An application of half-cycle Posicast’, IEEE Trans. Autom. Control, 1966, 11, (3), pp. 556559.
    20. 20)
      • 4. Shields, V.C., Cook, G.: ‘Application of an approximate time delay to a Posicast control system’, Int. J. Control, 1971, 14, (4), pp. 649657.
    21. 21)
      • 28. Sun, N., Fang, Y.C.: ‘An efficient online trajectory generating method for underactuated crane systems’, Int. J. Robust Nonlinear Control, 2014, 24, (11), pp. 16531663.
    22. 22)
      • 39. Zhang, Z., Wu, Y.: ‘Switching-based asymptotic stabilisation of underactuated ships with non-diagonal terms in their system matrices’, IET Control Theory Appl., 2015, 9, (6), pp. 972980.
    23. 23)
      • 31. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with application to finite-time stability’, Math. Control, Signals Syst., 2005, 17, (2), pp. 101127.
    24. 24)
      • 24. Yang, J., Li, S.H., Su, J.Y., et al: ‘Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances’, Automatica, 2013, 49, pp. 22872291.
    25. 25)
      • 18. Sarras, I., Kazi, F., Ortega, R., et al: ‘Total energy-shaping IDA-PBC control of the 2D SpiderCrane’. Proc. IEEE Conf. on Decision and Control, Atlanta, GA, USA, 2010, pp. 11221127.
    26. 26)
      • 9. Fang, Y.C., Ma, B.J., Wang, P.C., et al: ‘A motion planning-based adaptive control method for an underactuated crane system’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 241248.
    27. 27)
      • 1. Garrido, S., Abderrahim, M., Gimenez, A., et al: ‘Anti-swinging input shaping control of an automatic construction crane’, IEEE Trans. Autom. Sci. Eng., 2008, 5, (3), pp. 549557.
    28. 28)
      • 12. Erneux, T., Kalmar-Nagy, T.: ‘Nonlinear stability of a delayed feedback controlled container crane’, J. Vib. Control, 2007, 13, (5), pp. 603616.
    29. 29)
      • 34. Zhang, Z., Wu, Y., Huang, J.: ‘Robust adaptive antiswing control of underactuated crane systems with two parallel payloads and rail length constraint’, ISA Trans., 2016, 65, pp. 275283.
    30. 30)
      • 7. Singhose, W., Kenison, M., Kim, D.: ‘Input shaping control of double-pendulum bridge crane oscillations’, ASME Trans. J. Dyn. Syst. Meas. Control, 2008, 103, (3), pp. 03450417.
    31. 31)
      • 17. Ma, B., Fang, Y., Zhang, Y.: ‘Switching-based emergency braking control for an overhead crane system’, IET Control Theory Appl., 2010, 4, (9), pp. 17391747.
    32. 32)
      • 29. Shtessel, Y.B., Shkolnikov, I.A., Levant, A., et al: ‘Smooth second-order sliding modes: missile guidance application’, Automatica, 2007, 43, (8), pp. 14701476.
    33. 33)
      • 13. Bartolini, G., Pisano, A., Usai, E.: ‘Second-order sliding-mode control of container cranes’, Automatica, 2002, 38, (10), pp. 17831790.
    34. 34)
      • 36. Zhang, Z., Wu, Y., Huang, J.: ‘Differential-flatness-based finite-time anti-swing control of underactuated crane systems’, Nonlin. Dyn., 2017, 87, (3), pp. 17491761.
    35. 35)
      • 10. Sun, N., Fang, Y.C., Zhang, Y.D., et al: ‘A novel kinematic coupling-based trajectory planning method for overhead cranes’, IEEE/ASME Trans. Mechatronics, 2012, 17, (1), pp. 166173.
    36. 36)
      • 32. Sun, N., Fang, Y.C., Wu, X.: ‘An enhanced coupling nonlinear control method for bridge cranes’, IET Control Theory Appl., 2014, 8, (13), pp. 12151223.
    37. 37)
      • 2. Sun, N, Fang, Y.C., Zhang, X.B., et al: ‘Phase plane analysis based motion planning for underactuated overhead cranes’. Proc. IEEE Int. Conf. on Robotics and Automation, Shanghai, China, 2011, pp. 34833488.
    38. 38)
      • 14. Lee, H.H.: ‘A new design approach for the anti-swing trajectory control of overhead cranes with high-speed hoisting’, Int. J. Control, 2004, 77, (10), pp. 931940.
    39. 39)
      • 26. Ding, F., Huang, J., Wang, Y., et al: ‘Sliding mode control with an extended disturbance observer for a class of underactuated system in cascaded form’, Nonlinear Dyn., 2017, 90, (4), pp. 25712582.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5344
Loading

Related content

content/journals/10.1049/iet-cta.2018.5344
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading