Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stability analysis of fractional order time-delay systems: constructing new Lyapunov functions from those of integer order counterparts

This study deals with proposing a Lyapunov-based technique for stability analysis of fractional order time-delay systems. The proposed technique is constructed on the basis of modifying the convex part of a class of Lyapunov–Krasovskii functionals commonly used in stability analysis of integer order time-delay systems. As a consequence for this achievement, it is revealed that the Lyapunov–Krasovskii-based stability conditions in integer order time-delay systems can result in stability of their fractional order counterparts defined based on Caputo/Riemann–Liouville derivative operators with orders in the range (0,1). The applicability of the study results is shown through three different case studies.

References

    1. 1)
      • 12. Badri, V., Tavazoei, M.S.: ‘Achievable performance region for a fractional-order proportional and derivative motion controller’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 71717180.
    2. 2)
      • 14. Shen, J., Lam, J.: ‘Non-existence of finite-time stable equilibria in fractional-order nonlinear systems’, Automatica, 2014, 50, (2), pp. 547551.
    3. 3)
      • 34. Goh, B.S.: ‘Global stability in many species systems’, Am. Nat., 1977, 111, (977), pp. 135143.
    4. 4)
      • 5. Ibeas, A., Shafi, M., Ishfaq, M., et al: ‘Vaccination controllers for SEIR epidemic models based on fractional order dynamics’, Biomed. Signal Proc. Control, 2017, 38, pp. 136142.
    5. 5)
      • 23. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., et al: ‘Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1), pp. 650659.
    6. 6)
      • 26. He, B.B., Zhou, H.C., Chen, Y.Q., et al: ‘Asymptotical stability of fractional order systems with time delay via an integral inequality’, IET Control Theory Applic., 2018, 12, (12), pp. 17481754.
    7. 7)
      • 41. Arafa, A.A.M., Rida, S.Z., Khalil, M.: ‘Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection’, Nonlinear Biomed. Phys., 2012, 6, (1), p. 1.
    8. 8)
      • 43. Gallegos, J.A., Duarte-Mermoud, M.A.: ‘On the Lyapunov theory for fractional order systems’, Appl. Math. Comput., 2016, 287, pp. 161170.
    9. 9)
      • 30. Abdeljawad, T., Gejji, V.: ‘Lyapunov–Krasovskii stability theorem for fractional systems with delay’, Rom. J. Phys., 2011, 56, (5-6), pp. 636643.
    10. 10)
      • 19. Li, Y., Chen, Y.Q., Podlubny, I.: ‘Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability’, Comput. Math. Appl., 2010, 59, (5), pp. 18101821.
    11. 11)
      • 29. Mesbahi, A., Haeri, M.: ‘Stability of neutral type fractional delay systems and its relation with stability of time-delay and discrete systems’, IET Control Theory Applic., 2016, 10, (18), pp. 24822489.
    12. 12)
      • 6. Badri, V., Tavazoei, M.S.: ‘Simultaneous compensation of the gain, phase, and phase-slope’, J. Dyn. Syst. Meas. Control, 2016, 138, (12), p. 121002.
    13. 13)
      • 8. Badri, V., Tavazoei, M.S.: ‘Some analytical results on tuning fractional-order [proportional–integral] controllers for fractional-order systems’, IEEE Trans. Control Syst. Technol., 2016, 24, (3), pp. 10591066.
    14. 14)
      • 20. Trigeassou, J.C., Maamri, N., Sabatier, J., et al: ‘A Lyapunov approach to the stability of fractional differential equations’, Signal Process., 2011, 91, (3), pp. 437445.
    15. 15)
      • 21. Yu, J., Hu, H., Zhou, S., et al: ‘Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems’, Automatica, 2013, 49, (6), pp. 17981803.
    16. 16)
      • 2. Wang, B., Liu, Z., Li, S.E., et al: ‘State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model’, IEEE Trans. Control Syst. Technol., 2017, 25, (1), pp. 311.
    17. 17)
      • 4. Das, S., Das, S., Gupta, A.: ‘Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PIλDμ controller’, IEEE Trans. Nucl. Sci., 2011, 58, (5), pp. 24312441.
    18. 18)
      • 25. Tuan, H.T., Trinh, H.: ‘A linearized stability theorem for nonlinear delay fractional differential equations’, IEEE Trans. Autom. Control, 2018, 63, (9), pp. 31803186.
    19. 19)
      • 28. Nasiri, H., Haeri, M.: ‘How BIBO stability of LTI fractional-order time delayed systems relates to their approximated integer-order counterparts’, IET Control Theory Applic., 2014, 8, (8), pp. 598605.
    20. 20)
      • 9. Badri, V., Tavazoei, M.S.: ‘On tuning fractional order [proportional–derivative] controllers for a class of fractional order systems’, Automatica, 2013, 49, (7), pp. 22972301.
    21. 21)
      • 39. Badri, V., Yazdanpanah, M.J., Tavazoei, M.S.: ‘Global stabilization of Lotka-Volterra systems with interval uncertainty’, IEEE Trans. Autom. Control, 2019, 64, (3), pp. 12091213.
    22. 22)
      • 18. Li, Y., Chen, Y.Q., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, (8), pp. 19651969.
    23. 23)
      • 10. Monje, C.A., Vinagre, B.M., Feliu, V., et al: ‘Tuning and auto-tuning of fractional order controllers for industry applications’, Control Eng. Pract., 2008, 16, (7), pp. 798812.
    24. 24)
      • 24. Zhang, G., Tian, B., Zhang, W., et al: ‘Optimized robust control for industrial unstable process via the mirror-mapping method’, ISA Trans., 2019, 86, pp. 917.
    25. 25)
      • 7. Tavakoli-Kakhki, M., Tavazoei, M.S.: ‘Proportional stabilization and closed-loop identification of an unstable fractional order process’, J. Process Control, 2014, 24, (5), pp. 542549.
    26. 26)
      • 1. GadElkarim, J.J., Magin, R.L., Meerschaert, M.M., et al: ‘Fractional order generalization of anomalous diffusion as a multidimensional extension of the transmission line equation’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (3), pp. 432441.
    27. 27)
      • 32. Li, C., Deng, W.: ‘Remarks on fractional derivatives’, Appl. Math. Comput., 2007, 187, (2), pp. 777784.
    28. 28)
      • 37. Ahmed, E., El Sayed, A.M.A., El Saka, H.a.a.: ‘Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models’, J. Math. Anal. Appl., 2007, 325, (1), pp. 542553.
    29. 29)
      • 17. Zhang, G., Huang, C., Zhang, X., et al: ‘Practical constrained dynamic positioning control for uncertain ship through the minimal learning parameter technique’, IET Control Theory Applic., 2018, 12, (18), pp. 25262533.
    30. 30)
      • 15. Aguiar, B., González, T., Bernal, M.: ‘A way to exploit the fractional stability domain for robust chaos suppression and synchronization via lmis’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 27962807.
    31. 31)
      • 13. Badri, P., Sojoodi, M.: ‘Robust fixed-order dynamic output feedback controller design for fractional-order systems’, IET Control Theory Applic., 2018, 12, (9), pp. 12361243.
    32. 32)
      • 31. Krasovskii, N.N., McCord, J., Gudeman, J.: ‘Stability of motion: applications of Lyapunov's second method to differential systems and equations with delay’ (Stanford University Press, Stanford, 1963).
    33. 33)
      • 42. McCluskey, C.C.: ‘Using Lyapunov functions to construct Lyapunov functionals for delay differential equations’, SIAM J. Appl. Dyn. Syst., 2015, 14, (1), pp. 124.
    34. 34)
      • 3. Ionescu, C.M., Machado, J.A.T., De Keyser, R.: ‘Modeling of the lung impedance using a fractional-order ladder network with constant phase elements’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (1), pp. 8389.
    35. 35)
      • 40. Li, M.Y., Shu, H.: ‘Global dynamics of an in-host viral model with intracellular delay’, Bull. Math. Biol., 2010, 72, (6), pp. 14921505.
    36. 36)
      • 22. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.
    37. 37)
      • 11. Feliu-Batlle, V., Rivas-Perez, R.: ‘Robust fractional-order controller for an EAF electrode position system’, Control Eng. Pract., 2016, 56, pp. 159173.
    38. 38)
      • 38. Badri, V., Yazdanpanah, M.J., Tavazoei, M.S.: ‘On stability and trajectory boundedness of Lotka–Volterra systems with polytopic uncertainty’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 64236429.
    39. 39)
      • 27. Shen, J., Lam, J.: ‘Stability and performance analysis for positive fractional-order systems with time-varying delays’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 26762681.
    40. 40)
      • 36. Elsadany, A.A., Matouk, A.E.: ‘Dynamical behaviors of fractional-order Lotka–Volterra predator–prey model and its discretization’, J. Appl. Math. Comput., 2015, 49, (1-2), pp. 269283.
    41. 41)
      • 35. Das, S., Gupta, P.K.: ‘A mathematical model on fractional Lotka–Volterra equations’, J. Theor. Biol., 2011, 277, (1), pp. 16.
    42. 42)
      • 16. Chen, W., Dai, H., Song, Y., et al: ‘Convex Lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Applic., 2017, 11, (7), pp. 10701074.
    43. 43)
      • 33. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, Cambridge, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5325
Loading

Related content

content/journals/10.1049/iet-cta.2018.5325
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address