Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Observability of Boolean networks via STP and graph methods

Loading full text...

Full text loading...

/deliver/fulltext/iet-cta/13/7/IET-CTA.2018.5279.html;jsessionid=1grc3mk4c9p80.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cta.2018.5279&mimeType=html&fmt=ahah

References

    1. 1)
      • 4. Heidel, J., Maloney, J., Farrow, C., et al: ‘Finding cycles in synchronous Boolean networks with applications to biochemical systems’, Int. J. Bifur. Chaos, 2003, 13, (03), pp. 535552.
    2. 2)
      • 21. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 18531857.
    3. 3)
      • 23. Li, M., Lu, J., Lou, J., et al: ‘The equivalence issue of two kinds of controllers in Boolean control networks’, Appl. Math. Comput., 2018, 321, pp. 633640.
    4. 4)
      • 29. Wang, L., Liu, Y., Wu, Z., et al: ‘Strategy optimization for static games based on STP method’, Appl. Math. Comput., 2018, 316, pp. 390640.
    5. 5)
      • 36. Layek, R., Datta, A.: ‘Fault detection and intervention in biological feedback’, J. Biol. Syst., 2013, 20, (4), pp. 441453.
    6. 6)
      • 30. Ideker, T., Galitski, T., Hood, L.: ‘A new approach to decoding life: systems biology’, Annu. Rev. Genomics Hum. Genet., 2001, 2, (1), pp. 343372.
    7. 7)
      • 32. Zhu, Q., Liu, Y., Lu, J., et al: ‘Further results on the controllabilty of Boolean control networks’, IEEE Trans. Autom. Control, 2018; DOI: 10.1109/TAC.2018.2830642.
    8. 8)
      • 15. Tong, L., Liu, Y., Lou, J., et al: ‘Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks’, Appl. Math. Comput., 2018, 332, pp. 263275.
    9. 9)
      • 27. Wu, Y., Shen, T.: ‘A finite convergence criterion for the discounted optimal control of stochastic logical networks’, IEEE Trans. Autom. Control, 2017, 63, pp. 262268.
    10. 10)
      • 2. Davidson, E.H., Bolouri, H.: ‘A genomic regulatory network for development’, Science, 2002, 295, (5560), p. 1669.
    11. 11)
      • 8. Li, R., Yang, M., Chu, T.: ‘Observability conditions of Boolean control networks’, Int. J. Robust Nonlinear Control, 2014, 24, (17), pp. 27112723.
    12. 12)
      • 19. Zhang, H., Wang, X., Lin, X.: ‘Synchronization of Boolean networks with different update schemes’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2014, 11, (5), pp. 965972.
    13. 13)
      • 6. Cheng, D., Qi, H., Li, Z., et al: ‘Stability and stabilization of Boolean networks’, Int. J. Robust Nonlinear Control, 2011, 21, (2), pp. 134156.
    14. 14)
      • 20. Zhang, H., Wang, X., Lin, X.: ‘Synchronization of asynchronous switched Boolean network’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2015, 12, (6), pp. 14491456.
    15. 15)
      • 7. Zhu, Q., Liu, Y., Lu, J., et al: ‘Observability of Boolean control networks’, Sci. China Inf. Sci., 2018, 61, (9), p. 092201.
    16. 16)
      • 9. Zhang, K., Zhang, L., Xie, L.: ‘Finite automata approach to observability of switched Boolean control networks’, Nonlinear Anal., Hybrid Syst., 2016, 19, pp. 186197.
    17. 17)
      • 37. Laschov, D., Margaliot, M., Even, G.: ‘Observability of Boolean networks: a graph-theoretic approach’, Automatica, 2013, 49, (8), pp. 23512362.
    18. 18)
      • 38. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 16591667.
    19. 19)
      • 14. Li, H., Wang, Y.: ‘Lyapunov-based stability and construction of lyapunov functions for Boolean networks’, SIAM J. Control Optim., 2017, 55, (6), pp. 34373457.
    20. 20)
      • 11. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340345.
    21. 21)
      • 12. Lu, J., Zhong, J., Ho, D.W.C., et al: ‘On controllability of delayed Boolean control networks’, SIAM J. Control Optim., 2016, 54, (2), pp. 475494.
    22. 22)
      • 22. Zou, Y., Zhu, J., Liu, Y.: ‘State-feedback controller design for disturbance decoupling of Boolean control networks’, IET Control Theory Appl., 2017, 11, (18), pp. 32333239.
    23. 23)
      • 33. Cobelli, C., Romaninjacur, G.: ‘Controllability, observability and structural identifiability of multi input and multi output biological compartmental systems’, IEEE Trans. Bio-Med. Eng., 1976, 23, (2), pp. 93100.
    24. 24)
      • 25. Fornasini, E., Valcher, M.E.: ‘Fault detection analysis of Boolean control networks’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 27342739.
    25. 25)
      • 17. Meng, M., Lam, J., Feng, J., et al: ‘Stability and guaranteed cost analysis of time-triggered Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 29, (8), pp. 38933899.
    26. 26)
      • 34. Lopez, I., Gamez, M., Carreno, R.: ‘Observability in dynamic evolutionary models’, BioSystems, 2004, 58, pp. 99109.
    27. 27)
      • 24. Li, H., Xie, L., Wang, Y.: ‘On robust control invariance of Boolean control networks’, Automatica, 2016, 68, pp. 392396.
    28. 28)
      • 40. Liu, R., Qian, C., Jin, Y.F.: ‘Observability and sensor allocation for Boolean networks’, IEEE American Control Conf. (ACC, 2017), Seattle, 2017, pp. 38803885.
    29. 29)
      • 28. Zhu, Q., Liu, Y., Lu, J., et al: ‘On the optimal control of Boolean control networks’, SIAM J. Control Optim., 2018, 56, pp. 13211341.
    30. 30)
      • 3. Akutsu, T., Hayashida, M., Ching, W.K., et al: ‘Control of Boolean networks: hardness results and algorithms for tree structured networks’, J. Theor. Biol., 2007, 244, (4), pp. 670679.
    31. 31)
      • 26. Liu, Y., Li, B., Lu, J., et al: ‘Pinning control for the disturbance decoupling problem of Boolean networks’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65956601.
    32. 32)
      • 16. Mao, Y., Wang, L., Liu, Y., et al: ‘Stabilization of evolutionary networked games with length-r information’, Appl. Math. Comput., 2018, 337, pp. 442451.
    33. 33)
      • 35. Garcia, M.R., Vilas, C., Banga, J.R., et al: ‘Exponential observers for distributed tubular (bio) reactors’, AlChE J., 2008, 54, pp. 29432956.
    34. 34)
      • 18. Liu, Y., Li, B., Chen, H., et al: ‘Function perturbations on singular Boolean networks’, Automatica, 2017, 84, pp. 3642.
    35. 35)
      • 10. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the perron–frobenius theory’, Automatica, 2012, 48, (6), pp. 12181223.
    36. 36)
      • 13. Meng, M., Liu, L., Feng, G.: ‘Stability and l1 gain analysis of Boolean networks with markovian jump parameters’, IEEE Trans. Autom. Control, 2017, 62, (8), pp. 42224228.
    37. 37)
      • 1. Kauffman, S.A.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437467.
    38. 38)
      • 39. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    39. 39)
      • 5. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer Science & Business Media, New York, 2010).
    40. 40)
      • 31. Liang, J., Chen, H., Lam, J.: ‘An improved criterion for controllability of Boolean control networks’, Automatica, 2017, 62, (11), pp. 60126018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5279
Loading

Related content

content/journals/10.1049/iet-cta.2018.5279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address