© The Institution of Engineering and Technology
Full text loading...
/deliver/fulltext/iet-cta/13/7/IET-CTA.2018.5279.html;jsessionid=2a5ew7hgbfd2w.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cta.2018.5279&mimeType=html&fmt=ahah
References
-
-
1)
-
4. Heidel, J., Maloney, J., Farrow, C., et al: ‘Finding cycles in synchronous Boolean networks with applications to biochemical systems’, Int. J. Bifur. Chaos, 2003, 13, (03), pp. 535–552.
-
2)
-
21. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 1853–1857.
-
3)
-
23. Li, M., Lu, J., Lou, J., et al: ‘The equivalence issue of two kinds of controllers in Boolean control networks’, Appl. Math. Comput., 2018, 321, pp. 633–640.
-
4)
-
29. Wang, L., Liu, Y., Wu, Z., et al: ‘Strategy optimization for static games based on STP method’, Appl. Math. Comput., 2018, 316, pp. 390–640.
-
5)
-
36. Layek, R., Datta, A.: ‘Fault detection and intervention in biological feedback’, J. Biol. Syst., 2013, 20, (4), pp. 441–453.
-
6)
-
30. Ideker, T., Galitski, T., Hood, L.: ‘A new approach to decoding life: systems biology’, Annu. Rev. Genomics Hum. Genet., 2001, 2, (1), pp. 343–372.
-
7)
-
32. Zhu, Q., Liu, Y., Lu, J., et al: ‘Further results on the controllabilty of Boolean control networks’, IEEE Trans. Autom. Control, 2018; .
-
8)
-
15. Tong, L., Liu, Y., Lou, J., et al: ‘Static output feedback set stabilization for context-sensitive probabilistic Boolean control networks’, Appl. Math. Comput., 2018, 332, pp. 263–275.
-
9)
-
27. Wu, Y., Shen, T.: ‘A finite convergence criterion for the discounted optimal control of stochastic logical networks’, IEEE Trans. Autom. Control, 2017, 63, pp. 262–268.
-
10)
-
2. Davidson, E.H., Bolouri, H.: ‘A genomic regulatory network for development’, Science, 2002, 295, (5560), p. 1669.
-
11)
-
8. Li, R., Yang, M., Chu, T.: ‘Observability conditions of Boolean control networks’, Int. J. Robust Nonlinear Control, 2014, 24, (17), pp. 2711–2723.
-
12)
-
19. Zhang, H., Wang, X., Lin, X.: ‘Synchronization of Boolean networks with different update schemes’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2014, 11, (5), pp. 965–972.
-
13)
-
6. Cheng, D., Qi, H., Li, Z., et al: ‘Stability and stabilization of Boolean networks’, Int. J. Robust Nonlinear Control, 2011, 21, (2), pp. 134–156.
-
14)
-
20. Zhang, H., Wang, X., Lin, X.: ‘Synchronization of asynchronous switched Boolean network’, IEEE/ACM Trans. Comput. Biol. Bioinf., 2015, 12, (6), pp. 1449–1456.
-
15)
-
7. Zhu, Q., Liu, Y., Lu, J., et al: ‘Observability of Boolean control networks’, Sci. China Inf. Sci., 2018, 61, (9), p. 092201.
-
16)
-
9. Zhang, K., Zhang, L., Xie, L.: ‘Finite automata approach to observability of switched Boolean control networks’, Nonlinear Anal., Hybrid Syst., 2016, 19, pp. 186–197.
-
17)
-
37. Laschov, D., Margaliot, M., Even, G.: ‘Observability of Boolean networks: a graph-theoretic approach’, Automatica, 2013, 49, (8), pp. 2351–2362.
-
18)
-
38. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 1659–1667.
-
19)
-
14. Li, H., Wang, Y.: ‘Lyapunov-based stability and construction of lyapunov functions for Boolean networks’, SIAM J. Control Optim., 2017, 55, (6), pp. 3437–3457.
-
20)
-
11. Liu, Y., Chen, H., Lu, J., et al: ‘Controllability of probabilistic Boolean control networks based on transition probability matrices’, Automatica, 2015, 52, pp. 340–345.
-
21)
-
12. Lu, J., Zhong, J., Ho, D.W.C., et al: ‘On controllability of delayed Boolean control networks’, SIAM J. Control Optim., 2016, 54, (2), pp. 475–494.
-
22)
-
22. Zou, Y., Zhu, J., Liu, Y.: ‘State-feedback controller design for disturbance decoupling of Boolean control networks’, IET Control Theory Appl., 2017, 11, (18), pp. 3233–3239.
-
23)
-
33. Cobelli, C., Romaninjacur, G.: ‘Controllability, observability and structural identifiability of multi input and multi output biological compartmental systems’, IEEE Trans. Bio-Med. Eng., 1976, 23, (2), pp. 93–100.
-
24)
-
25. Fornasini, E., Valcher, M.E.: ‘Fault detection analysis of Boolean control networks’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 2734–2739.
-
25)
-
17. Meng, M., Lam, J., Feng, J., et al: ‘Stability and guaranteed cost analysis of time-triggered Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 29, (8), pp. 3893–3899.
-
26)
-
34. Lopez, I., Gamez, M., Carreno, R.: ‘Observability in dynamic evolutionary models’, BioSystems, 2004, 58, pp. 99–109.
-
27)
-
24. Li, H., Xie, L., Wang, Y.: ‘On robust control invariance of Boolean control networks’, Automatica, 2016, 68, pp. 392–396.
-
28)
-
40. Liu, R., Qian, C., Jin, Y.F.: ‘Observability and sensor allocation for Boolean networks’, IEEE American Control Conf. (ACC, 2017), Seattle, 2017, pp. 3880–3885.
-
29)
-
28. Zhu, Q., Liu, Y., Lu, J., et al: ‘On the optimal control of Boolean control networks’, SIAM J. Control Optim., 2018, 56, pp. 1321–1341.
-
30)
-
3. Akutsu, T., Hayashida, M., Ching, W.K., et al: ‘Control of Boolean networks: hardness results and algorithms for tree structured networks’, J. Theor. Biol., 2007, 244, (4), pp. 670–679.
-
31)
-
26. Liu, Y., Li, B., Lu, J., et al: ‘Pinning control for the disturbance decoupling problem of Boolean networks’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 6595–6601.
-
32)
-
16. Mao, Y., Wang, L., Liu, Y., et al: ‘Stabilization of evolutionary networked games with length-r information’, Appl. Math. Comput., 2018, 337, pp. 442–451.
-
33)
-
35. Garcia, M.R., Vilas, C., Banga, J.R., et al: ‘Exponential observers for distributed tubular (bio) reactors’, AlChE J., 2008, 54, pp. 2943–2956.
-
34)
-
18. Liu, Y., Li, B., Chen, H., et al: ‘Function perturbations on singular Boolean networks’, Automatica, 2017, 84, pp. 36–42.
-
35)
-
10. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the perron–frobenius theory’, Automatica, 2012, 48, (6), pp. 1218–1223.
-
36)
-
13. Meng, M., Liu, L., Feng, G.: ‘Stability and l1 gain analysis of Boolean networks with markovian jump parameters’, IEEE Trans. Autom. Control, 2017, 62, (8), pp. 4222–4228.
-
37)
-
1. Kauffman, S.A.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437–467.
-
38)
-
39. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 1390–1401.
-
39)
-
5. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer Science & Business Media, New York, 2010).
-
40)
-
31. Liang, J., Chen, H., Lam, J.: ‘An improved criterion for controllability of Boolean control networks’, Automatica, 2017, 62, (11), pp. 6012–6018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5279
Related content
content/journals/10.1049/iet-cta.2018.5279
pub_keyword,iet_inspecKeyword,pub_concept
6
6