access icon free Positive filter design for positive piecewise homogeneous Markovian jump T–S fuzzy system

This study introduces a problem of positive filter design for positive piecewise homogeneous Markovian jump Takagi–Sugeno (T–S) fuzzy systems. The difference between the existing achievements is that the considered transition rate of the positive Markovian jump system is time-varying. This time-varying nature is finite piecewise homogeneous. The time variation of the transition rate is characterised by two cases: stochastic variation and arbitrary variation. First of all, sufficient conditions are obtained for stochastic stability and performance under the transition rate in a manner of stochastic variation and arbitrary variation by means of choosing a linear co-positive Lyapunov function. Then, based on the obtained achievements, the problem of positive filter design for the positive piecewise homogeneous Markovian jump T–S fuzzy system is studied. All the mentioned problems in this study can be solved by linear programming. Finally, a biological model is proposed to illustrate the effectiveness of theoretical results.

Inspec keywords: control system synthesis; Markov processes; stability; linear programming; fuzzy control; Lyapunov methods; stochastic systems; fuzzy systems

Other keywords: positive piecewise homogeneous Markovian jump Takagi–Sugeno fuzzy system; stochastic stability; positive piecewise homogeneous Markovian jump T–S fuzzy system; positive L1 filter design; linear programming; sufficient conditions; transition rate; arbitrary variation; finite piecewise homogeneous system; linear co-positive Lyapunov function; time variation; biological model; stochastic variation; time-varying system

Subjects: Fuzzy control; Time-varying control systems; Stability in control theory; Optimisation techniques; Markov processes; Control system analysis and synthesis methods

References

    1. 1)
      • 25. Li, S., Xiang, Z., Lin, H., et al: ‘State estimation on positive Markovian jump systems with time-varying delay and uncertain transition probabilities’, Inf. Sci., 2016, 369, pp. 251266.
    2. 2)
      • 21. Bolzern, P., Colaneri, P., Nicolao, G.: ‘Stochastic stability of positive Markov jump linear systems’, Automatica, 2014, 50, (4), pp. 11811187.
    3. 3)
      • 6. Ebihara, Y., Peaucelle, D., Arzelier, D.: ‘LMI approach to linear positive system analysis and synthesis’, Syst. Control Lett., 2014, 63, (63), pp. 5056.
    4. 4)
      • 24. Park, I.S., Kwon, N.K., Park, P.G.: ‘A linear programming approach for stabilization of positive Markovian jump systems with a saturated single input’, Nonlinear Anal. Hybrid Syst., 2018, 29, pp. 322332.
    5. 5)
      • 13. Liu, X., Dang, C.: ‘Stability analysis of positive switched linear systems with delays’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16841690.
    6. 6)
      • 7. Shen, J., Lam, J.: ‘l/ L-gain analysis for positive linear systems with unbounded time-varying delays’, IEEE Trans. Autom. Control, 2015, 60, (3), pp. 857862.
    7. 7)
      • 33. Zhang, L.: ‘H estimation for discrete-time piecewise homogeneous Markov jump linear systems’, Automatica, 2009, 45, (11), pp. 25702576.
    8. 8)
      • 36. Wu, Z., Ju, H.P., Su, H., et al: ‘Stochastic stability analysis of piecewise homogeneous Markovian jump neural networks with mixed time-delays’, J. Franklin Inst., 2012, 349, (6), pp. 21362150.
    9. 9)
      • 22. Zhang, J., Han, Z., Zhu, F.: ‘Stochastic stability and stabilization of positive systems with Markovian jump parameters’, Nonlinear Anal. Hybrid Syst., 2014, 12, (1), pp. 147155.
    10. 10)
      • 40. Zhao, X., Wu, T., Zheng, X., et al: ‘Discussions on observer design of nonlinear positive systems via T–S fuzzy modeling’, Neurocomputing, 2015, 157, pp. 7075.
    11. 11)
      • 27. Qi, W., Zong, G., Karimi, H.R.: ‘L control for positive delay systems with semi-Markov process and application to a communication network model’, IEEE Trans. Ind. Electron., 2018, doi: 10.1109/TIE.2018.2838113.
    12. 12)
      • 38. Zhang, Y., Zhang, Q., Zhang, G.: ‘H control of T–S fuzzy fish population logistic model with the invasion of alien species’, Neurocomputing, 2016, 173, (3), pp. 724733.
    13. 13)
      • 23. Zhu, S., Han, Q., Zhang, C.: ‘L1-stochastic stability and L1-gain performance of positive Markov jump linear systems with time-delays: necessary and sufficient conditions’, IEEE Trans. Autom. Control, 2017, 62, (7), pp. 36343639.
    14. 14)
      • 10. Xiang, W., Lam, J., Shen, J.: ‘Stability analysis and L1-gain characterization for switched positive systems under dwell-time constraint’, Automatica, 2017, 85, pp. 18.
    15. 15)
      • 37. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley, New York, 2001).
    16. 16)
      • 44. Zhang, Q., Liu, C., Zhang, X.: ‘Complexity, analysis and control of singular biological systems’ (Springer, London, 2012).
    17. 17)
      • 18. Shen, H., Li, F., Yan, H., et al: ‘Finite-time event-triggered H Control for T–S Fuzzy Markov Jump Systems’, IEEE Trans. Fuzzy Syst., 2017, doi: 10.1109/TFUZZ.2017.2788891.
    18. 18)
      • 41. Chen, X., Lam, J., Li, P.: ‘Positive filtering for continuous-time positive systems under L1 performance’, Int. J. Control, 2014, 87, (9), pp. 19061913.
    19. 19)
      • 17. Zhuang, G., Ma, Q., Zhang, B., et al: ‘Admissibility and stabilization of stochastic singular Markovian jump systems with time delays’, Syst. Control Lett., 2018, 114, pp. 110.
    20. 20)
      • 3. Chen, X., Lam, J., Li, P., et al: ‘l1-induced norm and controller synthesis of positive systems’, Automatica, 2013, 49, (5), pp. 13771385.
    21. 21)
      • 4. Zhu, S., Han, Q., Zhang, C.: ‘l1-gain performance analysis and positive filter design for positive discrete-time Markov jump linear systems: a linear programming approach’, Automatica, 2014, 50, (8), pp. 20982107.
    22. 22)
      • 14. Sun, Y., Tian, Y., Xie, X.: ‘Stabilization of positive switched linear systems and its application in consensus of multiagent systems’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 66086613.
    23. 23)
      • 1. Kaczorek, T.: ‘Positive 1D and 2D systems’ (Springer-Verlag, London, 2002).
    24. 24)
      • 11. Zheng, J., Dong, J., Xie, L.: ‘Stability of discrete-time positive switched linear systems with stable and marginally stable subsystems’, Automatica, 2018, 91, pp. 294300.
    25. 25)
      • 30. Li, J., Zhang, Q., Yan, X., et al: ‘Integral sliding mode control for Markovian jump T–S fuzzy descriptor systems based on the super-twisting algorithm’, IET Control Theory A, 2017, 11, (8), pp. 11341143.
    26. 26)
      • 35. Zhao, F., Zhang, Q., Wang, G.: ‘H filtering for piecewise homogeneous Markovian jump nonlinear systems’, Int. J. Syst. Sci., 2016, 47, (13), pp. 32583271.
    27. 27)
      • 34. Faraji-Niri, M., Jahed-Motlagh, M., Barkhordari-Yazdi, M.: ‘Stochastic stability and stabilization of a class of piecewise-homogeneous Markov jump linear systems with mixed uncertainties’, Int. J. Robust Nonlinear Control, 2017, 27, pp. 894914.
    28. 28)
      • 43. Zhang, D., Zhang, Q., Du, B.: ‘L1 fuzzy observer design for nonlinear positive Markovian jump system’, Nonlinear Anal. Hybrid Syst., 2018, 27, pp. 271288.
    29. 29)
      • 9. Du, B., Lam, J., Shu, Z., et al: ‘On reachable sets for positive linear systems under constrained exogenous inputs’, Automatica, 2016, 74, pp. 230237.
    30. 30)
      • 26. Lian, J., Li, S., Liu, J.: ‘T–S fuzzy control of positive Markov jump nonlinear systems’, IEEE Trans. Fuzzy Syst., 2017, 26, (4), pp. 23742383.
    31. 31)
      • 20. Bolzern, P., Colaneri, P.: ‘Positive Markov jump linear systems’, Found. Trends® in Syst. Control, 2015, 2, (3–4), pp. 275427.
    32. 32)
      • 5. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (Wiley, New York, 2000).
    33. 33)
      • 16. Sun, H., Li, Y., Zong, G., et al: ‘Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities’, Automatica, 2018, 89, pp. 349357.
    34. 34)
      • 19. Wang, J., Ma, S., Zhang, C: ‘Finite-time H control for T–S fuzzy descriptor semi-Markov jump systems via static output feedback’, Fuzzy Sets Syst., 2018, doi: 10.1016/j.fss.2018.04.001.
    35. 35)
      • 8. Eden, J., Tan, Y., Lau, D., et al: ‘On the positive output controllability of linear time invariant systems’, Automatica, 2016, 71, pp. 202209.
    36. 36)
      • 15. Zheng, Y., Ge, S.S., Wang, Y.: ‘Non-weighted l1 filtering for positive switched delay systems’, IET Control Theory A, 2018, 12, (8), pp. 10461054.
    37. 37)
      • 31. Ding, Y., Liu, H.: ‘Stability analysis of continuous-time Markovian jump time-delay systems with time-varying transition rates’, J. Franklin Inst., 2016, 353, (11), pp. 24182430.
    38. 38)
      • 2. Rami, M., Tadeo, F.: ‘Controller synthesis for positive linear systems with bounded controls’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2007, 54, (2), pp. 151155.
    39. 39)
      • 12. Zhao, X., Yin, Y., Liu, L., et al: ‘Stability analysis and delay control for switched positive linear systems’, IEEE Trans. Autom. Control, 2017, 63, (7), pp. 21842190.
    40. 40)
      • 32. Wang, G., Zhang, Q., Yang, C.: ‘Stabilization of singular Markovian jump systems with time-varying switchings’, Inf. Sci., 2015, 297, pp. 254270.
    41. 41)
      • 39. Benzaouia, A., Oubah, R.: ‘Stability and stabilization by output feedback control of positive takagi-sugeno fuzzy discrete-time systems with multiple delays’, Nonlinear Anal. Hybrid Syst., 2014, 11, (1), pp. 154170.
    42. 42)
      • 29. Zhang, Y., He, Y., Wu, M., et al: ‘Stabilization for Markovian jump systems with partial information on transition probability based on free-connection weighting matrices’, Automatica, 2011, 47, pp. 7984.
    43. 43)
      • 42. Chen, X., Lam, J., Lam, H.: ‘Positive filtering for positive takagi-sugeno fuzzy systems under l1 performance’, Inf. Sci., 2015, 299, pp. 3241.
    44. 44)
      • 28. Zhang, L., Boukas, E.K.: ‘Stability and stabilization of Markovian jump linear systems with partly unknown transition probability’, Automatica, 2009, 45, (2), pp. 463468.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5270
Loading

Related content

content/journals/10.1049/iet-cta.2018.5270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading