Finitetime asynchronous control for positive discretetime Markovian jump systems
Finitetime asynchronous control for positive discretetime Markovian jump systems
 Author(s): Hui Shang^{ 1} ; Wenhai Qi^{ 1} ; Guangdeng Zong^{ 1}
 DOI: 10.1049/ietcta.2018.5268
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
 Author(s): Hui Shang^{ 1} ; Wenhai Qi^{ 1} ; Guangdeng Zong^{ 1}


View affiliations

Affiliations:
1:
School of Engineering , Qufu Normal University , Rizhao 276826 , People's Republic of China

Affiliations:
1:
School of Engineering , Qufu Normal University , Rizhao 276826 , People's Republic of China
 Source:
Volume 13, Issue 7,
30
April
2019,
p.
935 – 942
DOI: 10.1049/ietcta.2018.5268 , Print ISSN 17518644, Online ISSN 17518652
Finitetime asynchronous control problem is discussed for positive Markovian jump systems in this study. The nonsynchronous behaviours generated between the system modes and controller modes are fully considered. To ensure the closedloop system positivity and finitetime boundedness with a guaranteed performance level, a sufficient condition on the existence of an asynchronous controller is first established by applying Lyapunov–Krasovskii functional approach and recursive matrix inequality methods. Then, with the aid of matrix conversions, the specific form of controller gain matrices can be constructed by solving linear matrix inequality (LMI) conditions. A numerical example is presented and application is illustrated to validate the proposed results by employing a pest's agestructured population dynamic model.
Inspec keywords: stability; discrete time systems; Lyapunov methods; timevarying systems; closed loop systems; stochastic systems; linear matrix inequalities; matrix algebra
Other keywords: finitetime asynchronous control problem; positive Markovian jump systems; positive discretetime Markovian jump systems; Lyapunov–Krasovskii functional approach; finitetime boundedness; controller gain matrices; asynchronous controller; recursive matrix inequality methods; closedloop system positivity; linear matrix inequity conditions
Subjects: Timevarying control systems; Discrete control systems; Algebra; Stability in control theory
References


1)

1. Alicia, M.G., Antonio, M.S.R., Javier, G.G.: ‘Modeling and forecasting electricity prices with input/output hidden Markov models’, IEEE Trans. Power Syst., 2005, 20, pp. 13–24.


2)

2. Shen, H., Li, F., Wu, Z.G., et al: ‘Finitetime asynchronous H∞ filtering for discretetime Markov jump systems over a lossy network’, Int. J. Robust Nonlinear Control, 2016, 26, pp. 3831–3848.


3)

3. Hien, L.V.: ‘An LP approach to fullorder and reducedorder state estimations of positive Markov jump systems with delay’, Int. J. Syst. Sci., 2017, 48, pp. 2534–2543.


4)

4. Zong, G.D., Yang, D., Hou, L.L., et al: ‘Robust finitetime H∞ control for Markovian jump systems with partially known transition probabilities’, J. Franklin Inst., 2013, 350, pp. 1562–1578.


5)

5. Sun, H.B., Li, Y.K., Zong, G.D., et al: ‘Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities’, Automatica, 2018, 89, pp. 349–357.


6)

6. Qi, W.H., Park, J.H., Cheng, J., et al: ‘Antiwindup design for stochastic Markovian switching systems with modedependent timevarying delays and saturation nonlinearity’, Nonlinear Anal. Hybrid Syst., 2017, 26, pp. 201–211.


7)

7. Ren, H.L., Zong, G.D.: ‘Robust inputoutput finitetime filtering for uncertain Markovian jump nonlinear systems with partially known transition probabilities’, Int. J. Adapt Control Signal Process., 2017, 31, pp. 1437–1455.


8)

8. Li, L.W., Yang, G.H.: ‘Stabilisation of Markov jump systems with input quantisation and general uncertain transition rates’, IET Control Theory Appl., 2017, 11, pp. 516–523.


9)

9. Qi, W.H., Zong, G.D., Karimi, H.R.: ‘Observerbased adaptive SMC for nonlinear uncertain singular semiMarkov jump systems with applications to DC motor’, IEEE Trans. Circuits Syst. Regul. Pap., 2018, 65, pp. 2951–2960.


10)

10. Cheng, J., Park, J.H., Karimi, H.R., et al: ‘A flexible terminal approach to sampleddata exponentially synchronization of Markovian neural networks with timevarying delayed signals’, IEEE Trans. Cybern., 2018, 48, pp. 2232–2244.


11)

11. Shen, H., Li, F., Xu, S.Y., et al: ‘Slow state variables feedback stabilization for semiMarkov jump systems with singular perturbations’, IEEE Trans. Autom. Control, 2018, 63, pp. 2709–2714.


12)

12. Wang, J., Liang, K., Huang, X., et al: ‘Dissipative faulttolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback’, Appl. Math. Comput., 2018, 328, pp. 247–262.


13)

13. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (John Wiley & Sons, New York, 2000).


14)

14. Zhang, D., Zhang, Q.L., Du, B.Z.: ‘Positivity and stability of positive singular Markovian jump timedelay system swith partially unknown transition rates’, J. Franklin Inst., 2016, 354, pp. 627–649.


15)

15. Hien, L.V., Trinh, H.: ‘Delaydependent stability and stabilisation of twodimensional positive Markov jump systems with delays’, IET Control Theory Appl., 2017, 11, pp. 1603–1610.


16)

16. Wang, J.Y., Qi, W.H., Gao, X.W.: ‘Positive observer design for positive Markovian jump systems with partly known transition rates’, J. Syst. Sci. Complex, 2017, 30, pp. 307–315.


17)

17. Qi, W.H., Zong, G.D., Karimi, H.R.: ‘L∞ control for positive delay systems with semiMarkov process and application to a communication network model’, IEEE Trans. Ind. Electron., 2018, 66, pp. 2081–2091, DOI: 10.1109/TIE.2018.2838113.


18)

18. Dorato, P.: ‘Shorttime stability in linear timevarying systems’. Proc. of the IRE Int. Convention Record, Part 4, New York, NY, USA, 1961, pp. 83–87.


19)

19. Amato, F., Ariola, M., Dorato, P.: ‘Finitetime control of linear systems subject to parametric uncertainties and disturbances’, Automatica, 2001, 37, pp. 1459–1463.


20)

20. Zhu, S.Q., Wang, B., Zhang, C.H.: ‘Delaydependent stochastic finitetime l1gain filtering for discretetime positive Markov jump linear systems with timedelay’, Automatica, 2017, 354, pp. 6894–6913.


21)

21. Liu, Y., Tao, W., Li, L.M., et al: ‘Finitetime boundedness and L2gain analysis for switched positive linear systems with multiple time delays’, Int. J. Robust Nonlinear Control, 2017, 27, pp. 3508–3523.


22)

22. Zhang, J.F., Han, Z.Z., Wu, H.: ‘Robust finitetime stability and stabilisation of switched positive systems’, IET Control Theory Appl., 2014, 8, pp. 67–75.


23)

23. Chen, G.P., Yang, Y.: ‘Finitetime stability of switched positive linear systems’, Int. J. Robust Nonlinear Control, 2014, 24, pp. 179–190.


24)

24. Xiang, M., Xiang, Z.R.: ‘Finitetime L1 control for positive switched linear systems with timevarying delay’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 3158–3166.


25)

25. Duan, Z.X., Xiang, Z.R.: ‘Finitetime boundedness and l1gain analysis for discrete positive switched systems with timevarying delay’. Proc. Chinese Control Conf. (CCC), Xi'an, China, July 2013, pp. 2090–2095.


26)

26. Cao, X.Y., Liu, L.P., Fu, Z.M., et al: ‘Guaranteed cost finitetime control for positive switched linear systems with timevarying delays’, J. Control Sci. Eng., 2017, 2017, pp. 319–328.


27)

27. Wang, B., Zhu, S.Q., Xu, Y., et al: ‘Stochastic finitetime boundedness analysis and control for discretetime positive Markov jump linear systems’. Proc. Chinese Control Decision Conf. (CCDC), Yinchuan, China, May 2016, pp. 1824–1829.


28)

28. Ding, S.H., Zheng, W.X., Sun, J.L., et al: ‘Secondorder sliding mode controller design and its implementation for buck converters’, IEEE Trans. Ind. Electron., 2018, 14, pp. 1990–2000.


29)

29. Cheng, J., Chang, X.H., Park, J.H., et al: ‘Fuzzymodelbased H∞ control for discretetime switched systems with quantized feedback and unreliable links’, Inf. Sci., 2018, 436, pp. 181–196.


30)

30. Ge, C., Wang, H., Liu, Y.J., et al: ‘Stabilization of chaotic systems under variable sampling and state quantized controller’, Fuzzy Sets Syst., 2018, 344, pp. 129–144.


31)

31. Wang, X.H., Zong, G.D., Sun, H.B.: ‘Asynchronous finitetime dynamic output feedback control for switched timedelay systems with nonlinear disturbance’, IET Control Theory Appl., 2016, 10, pp. 1142–1150.


32)

32. Ren, Y., Er, M.J., Sun, G.H.: ‘Asynchronous l1 positive filter design for switched positive systems with overlapped detection delay’, IET Control Theory Appl., 2016, 11, pp. 319–328.


33)

33. Wu, Z.G., Shi, P., Su, H.Y., et al: ‘Passivitybased asynchronous control for Markov jump systems’, IEEE Trans. Auto. Con., 2017, 62, pp. 2020–2025.


34)

34. Wu, Z.G., Dong, S.L., Su, H.Y., et al: ‘Asynchronous dissipative control for fuzzy Markov jump systems’, IEEE Trans. Cybern., 2017, 48, pp. 2426–2436, DOI: 10.1109/TCYB.2017.2739754.


35)

35. Ren, H.L., Zong, G.D., Hamid Reza, K.: ‘Asynchronous finitetime filtering of networked switched systems and its application: an eventdriven method’, IEEE Trans. Circuits Syst. Regul. Pap., 2018, 66, pp. 391–402, DOI: 10.1109/TCSI.2018.2857771.


36)

36. Zhu, S.Q., Han, Q.L., Zhang, C.H.: ‘Investigating the effects of timedelays on stochastic stability and designing l1gain controllers for positive discretetime Markov jump linear systems with timedelay’, Inf. Sci., 2016, 355, pp. 265–281.


37)

37. Zhang, J.F., Zhao, X.D., Fu, B., et al: ‘L1/l1gain analysis and synthesis of Markovian jump positive systems with time delay’, ISA Trans., 2016, 63, pp. 93–102.


1)