Finite-time asynchronous control for positive discrete-time Markovian jump systems

Finite-time asynchronous control for positive discrete-time Markovian jump systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Finite-time asynchronous control problem is discussed for positive Markovian jump systems in this study. The non-synchronous behaviours generated between the system modes and controller modes are fully considered. To ensure the closed-loop system positivity and finite-time boundedness with a guaranteed performance level, a sufficient condition on the existence of an asynchronous controller is first established by applying Lyapunov–Krasovskii functional approach and recursive matrix inequality methods. Then, with the aid of matrix conversions, the specific form of controller gain matrices can be constructed by solving linear matrix inequality (LMI) conditions. A numerical example is presented and application is illustrated to validate the proposed results by employing a pest's age-structured population dynamic model.


    1. 1)
      • 1. Alicia, M.G., Antonio, M.S.R., Javier, G.G.: ‘Modeling and forecasting electricity prices with input/output hidden Markov models’, IEEE Trans. Power Syst., 2005, 20, pp. 1324.
    2. 2)
      • 2. Shen, H., Li, F., Wu, Z.G., et al: ‘Finite-time asynchronous H filtering for discrete-time Markov jump systems over a lossy network’, Int. J. Robust Nonlinear Control, 2016, 26, pp. 38313848.
    3. 3)
      • 3. Hien, L.V.: ‘An LP approach to full-order and reduced-order state estimations of positive Markov jump systems with delay’, Int. J. Syst. Sci., 2017, 48, pp. 25342543.
    4. 4)
      • 4. Zong, G.D., Yang, D., Hou, L.L., et al: ‘Robust finite-time H control for Markovian jump systems with partially known transition probabilities’, J. Franklin Inst., 2013, 350, pp. 15621578.
    5. 5)
      • 5. Sun, H.B., Li, Y.K., Zong, G.D., et al: ‘Disturbance attenuation and rejection for stochastic Markovian jump system with partially known transition probabilities’, Automatica, 2018, 89, pp. 349357.
    6. 6)
      • 6. Qi, W.H., Park, J.H., Cheng, J., et al: ‘Anti-windup design for stochastic Markovian switching systems with mode-dependent time-varying delays and saturation nonlinearity’, Nonlinear Anal. Hybrid Syst., 2017, 26, pp. 201211.
    7. 7)
      • 7. Ren, H.L., Zong, G.D.: ‘Robust input-output finite-time filtering for uncertain Markovian jump nonlinear systems with partially known transition probabilities’, Int. J. Adapt Control Signal Process., 2017, 31, pp. 14371455.
    8. 8)
      • 8. Li, L.W., Yang, G.H.: ‘Stabilisation of Markov jump systems with input quantisation and general uncertain transition rates’, IET Control Theory Appl., 2017, 11, pp. 516523.
    9. 9)
      • 9. Qi, W.H., Zong, G.D., Karimi, H.R.: ‘Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor’, IEEE Trans. Circuits Syst. Regul. Pap., 2018, 65, pp. 29512960.
    10. 10)
      • 10. Cheng, J., Park, J.H., Karimi, H.R., et al: ‘A flexible terminal approach to sampled-data exponentially synchronization of Markovian neural networks with time-varying delayed signals’, IEEE Trans. Cybern., 2018, 48, pp. 22322244.
    11. 11)
      • 11. Shen, H., Li, F., Xu, S.Y., et al: ‘Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations’, IEEE Trans. Autom. Control, 2018, 63, pp. 27092714.
    12. 12)
      • 12. Wang, J., Liang, K., Huang, X., et al: ‘Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback’, Appl. Math. Comput., 2018, 328, pp. 247262.
    13. 13)
      • 13. Farina, L., Rinaldi, S.: ‘Positive linear systems: theory and applications’ (John Wiley & Sons, New York, 2000).
    14. 14)
      • 14. Zhang, D., Zhang, Q.L., Du, B.Z.: ‘Positivity and stability of positive singular Markovian jump time-delay system swith partially unknown transition rates’, J. Franklin Inst., 2016, 354, pp. 627649.
    15. 15)
      • 15. Hien, L.V., Trinh, H.: ‘Delay-dependent stability and stabilisation of two-dimensional positive Markov jump systems with delays’, IET Control Theory Appl., 2017, 11, pp. 16031610.
    16. 16)
      • 16. Wang, J.Y., Qi, W.H., Gao, X.W.: ‘Positive observer design for positive Markovian jump systems with partly known transition rates’, J. Syst. Sci. Complex, 2017, 30, pp. 307315.
    17. 17)
      • 17. Qi, W.H., Zong, G.D., Karimi, H.R.: ‘L control for positive delay systems with semi-Markov process and application to a communication network model’, IEEE Trans. Ind. Electron., 2018, 66, pp. 20812091, DOI: 10.1109/TIE.2018.2838113.
    18. 18)
      • 18. Dorato, P.: ‘Short-time stability in linear time-varying systems’. Proc. of the IRE Int. Convention Record, Part 4, New York, NY, USA, 1961, pp. 8387.
    19. 19)
      • 19. Amato, F., Ariola, M., Dorato, P.: ‘Finite-time control of linear systems subject to parametric uncertainties and disturbances’, Automatica, 2001, 37, pp. 14591463.
    20. 20)
      • 20. Zhu, S.Q., Wang, B., Zhang, C.H.: ‘Delay-dependent stochastic finite-time l1-gain filtering for discrete-time positive Markov jump linear systems with time-delay’, Automatica, 2017, 354, pp. 68946913.
    21. 21)
      • 21. Liu, Y., Tao, W., Li, L.M., et al: ‘Finite-time boundedness and L2-gain analysis for switched positive linear systems with multiple time delays’, Int. J. Robust Nonlinear Control, 2017, 27, pp. 35083523.
    22. 22)
      • 22. Zhang, J.F., Han, Z.Z., Wu, H.: ‘Robust finite-time stability and stabilisation of switched positive systems’, IET Control Theory Appl., 2014, 8, pp. 6775.
    23. 23)
      • 23. Chen, G.P., Yang, Y.: ‘Finite-time stability of switched positive linear systems’, Int. J. Robust Nonlinear Control, 2014, 24, pp. 179190.
    24. 24)
      • 24. Xiang, M., Xiang, Z.R.: ‘Finite-time L1 control for positive switched linear systems with time-varying delay’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, pp. 31583166.
    25. 25)
      • 25. Duan, Z.X., Xiang, Z.R.: ‘Finite-time boundedness and l1-gain analysis for discrete positive switched systems with time-varying delay’. Proc. Chinese Control Conf. (CCC), Xi'an, China, July 2013, pp. 20902095.
    26. 26)
      • 26. Cao, X.Y., Liu, L.P., Fu, Z.M., et al: ‘Guaranteed cost finite-time control for positive switched linear systems with time-varying delays’, J. Control Sci. Eng., 2017, 2017, pp. 319328.
    27. 27)
      • 27. Wang, B., Zhu, S.Q., Xu, Y., et al: ‘Stochastic finite-time boundedness analysis and control for discrete-time positive Markov jump linear systems’. Proc. Chinese Control Decision Conf. (CCDC), Yinchuan, China, May 2016, pp. 18241829.
    28. 28)
      • 28. Ding, S.H., Zheng, W.X., Sun, J.L., et al: ‘Second-order sliding mode controller design and its implementation for buck converters’, IEEE Trans. Ind. Electron., 2018, 14, pp. 19902000.
    29. 29)
      • 29. Cheng, J., Chang, X.H., Park, J.H., et al: ‘Fuzzy-model-based H control for discrete-time switched systems with quantized feedback and unreliable links’, Inf. Sci., 2018, 436, pp. 181196.
    30. 30)
      • 30. Ge, C., Wang, H., Liu, Y.J., et al: ‘Stabilization of chaotic systems under variable sampling and state quantized controller’, Fuzzy Sets Syst., 2018, 344, pp. 129144.
    31. 31)
      • 31. Wang, X.H., Zong, G.D., Sun, H.B.: ‘Asynchronous finite-time dynamic output feedback control for switched time-delay systems with nonlinear disturbance’, IET Control Theory Appl., 2016, 10, pp. 11421150.
    32. 32)
      • 32. Ren, Y., Er, M.J., Sun, G.H.: ‘Asynchronous l1 positive filter design for switched positive systems with overlapped detection delay’, IET Control Theory Appl., 2016, 11, pp. 319328.
    33. 33)
      • 33. Wu, Z.G., Shi, P., Su, H.Y., et al: ‘Passivity-based asynchronous control for Markov jump systems’, IEEE Trans. Auto. Con., 2017, 62, pp. 20202025.
    34. 34)
      • 34. Wu, Z.G., Dong, S.L., Su, H.Y., et al: ‘Asynchronous dissipative control for fuzzy Markov jump systems’, IEEE Trans. Cybern., 2017, 48, pp. 24262436, DOI: 10.1109/TCYB.2017.2739754.
    35. 35)
      • 35. Ren, H.L., Zong, G.D., Hamid Reza, K.: ‘Asynchronous finite-time filtering of networked switched systems and its application: an event-driven method’, IEEE Trans. Circuits Syst. Regul. Pap., 2018, 66, pp. 391402, DOI: 10.1109/TCSI.2018.2857771.
    36. 36)
      • 36. Zhu, S.Q., Han, Q.L., Zhang, C.H.: ‘Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay’, Inf. Sci., 2016, 355, pp. 265281.
    37. 37)
      • 37. Zhang, J.F., Zhao, X.D., Fu, B., et al: ‘L1/l1-gain analysis and synthesis of Markovian jump positive systems with time delay’, ISA Trans., 2016, 63, pp. 93102.

Related content

This is a required field
Please enter a valid email address