access icon free Semi-global edge-consensus of linear discrete-time multi-agent systems with positive constraint and input saturation

, The authors study the semi-global edge-consensus of linear discrete-time multi-agent systems subject to edge state positive constraint and input saturation. By virtue of the positive system theory and low-gain feedback method, the distributed control protocols for undirected and directed networks are designed to guarantee the non-negative edge-consensus with input saturation. Then, sufficient conditions, which can guarantee the edge-consensus together with keeping the positive edge state constraint and avoiding the input saturation, are provided. Finally, two examples are presented to verify the theoretical results.

Inspec keywords: feedback; graph theory; distributed control; discrete time systems; linear systems; multi-agent systems

Other keywords: positive edge state constraint; low-gain feedback method; linear discrete-time multiagent systems; semiglobal edge-consensus; distributed control protocols; positive system theory; state positive constraint; nonnegative edge-consensus

Subjects: Combinatorial mathematics; Multivariable control systems; Linear control systems; Discrete control systems

References

    1. 1)
      • 13. Su, H.S., Chen, M.Z.Q., Wang, X.F., et al: ‘Semi-global observer-based leader-following consensus with input saturation’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28422850.
    2. 2)
      • 12. Tian, Y.P., Liu, C.L.: ‘Consensus of multi-agent systems with diverse pnput and communication delays’, IEEE Trans. Autom. Control, 2008, 53, (9), pp. 21222128.
    3. 3)
      • 28. Wu, H., Su, H.S.: ‘Discrete-time positive edge-consensus for undirected and directed nodal networks’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 65, (2), pp. 221225.
    4. 4)
      • 6. Li, T., Fu, M., Xie, L., et al: ‘Distributed consensus with limited communication data rate’, IEEE Trans. Autom. Control, 2011, 56, (2), pp. 279292.
    5. 5)
      • 7. Li, Z.K., Duan, Z.S., Chen, G.R., et al: ‘Consensus of multi-agent systems and synchronization of complex networks: a unified viewpoint’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2010, 57, (1), pp. 213224.
    6. 6)
      • 29. Su, H.S., Wu, H., Chen, X.: ‘Observer-based discrete-time nonnegative edge synchronization of networked systems’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (10), pp. 24462455.
    7. 7)
      • 23. Li, Y., Canepa, E., Claudel, C.: ‘Optimal control of scalar conservation laws using linear/quadratic programming: application to transportation networks’, IEEE Trans. Control Netw. Syst., 2014, 1, (1), pp. 2839.
    8. 8)
      • 35. Teel, A.R.: ‘Semi-global stabilizability of linear null controllable systems with input nonlinearities’, IEEE Trans. Autom. Control, 1995, 40, (1), pp. 96100.
    9. 9)
      • 32. Su, H.S., Chen, M.Z.Q., Lam, J., et al: ‘Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2013, 60, (7), pp. 18811889.
    10. 10)
      • 25. Wang, X.L., Su, H.S., Wang, X.F., et al: ‘Nonnegative edge quasi-consensus of networked dynamical systems’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (3), pp. 304308.
    11. 11)
      • 3. You, K., Xie, L.: ‘Network topology and communication data rate for consensusability of discrete-time multi-agent systems’, IEEE Trans. Autom. Control, 2011, 56, (10), pp. 22622275.
    12. 12)
      • 24. Wang, X.L., Su, H.S., Wang, L., et al: ‘Edge consensus on complex networks: a structural analysis’, Int. J. Control, 2016, 90, (8), pp. 129.
    13. 13)
      • 1. Valcher, M.E., Misra, P.: ‘On the stabilizability and consensus of positive homogeneous multi-agent dynamical systems’, IEEE Trans. Autom. Control, 2014, 59, (7), pp. 19361941.
    14. 14)
      • 37. Harary, F., Norman, R.Z.: ‘Some properties of line digraphs’, Rend. Circ. Math. Palermo, 1960, 9, (2), pp. 161168.
    15. 15)
      • 31. Fan, M.C., Zhang, H.T., Lin, Z.: ‘Distributed semiglobal consensus with relative output feedback and input saturation under directed switching networks’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2015, 60, (7), pp. 796800.
    16. 16)
      • 18. Wu, H., Su, H.S.: ‘Observer-based consensus for positive multiagent systems with directed topology and nonlinear control input’, IEEE Trans. Syst. Man Cybern., Syst., 2018, doi: 10.1109/TSMC.2018.2852704.
    17. 17)
      • 2. Hong, Y., Hu, J., Gao, L.: ‘Tracking control for multi-agent consensus with an active leader and variable topology’, Automatica, 2006, 42, (7), pp. 11771182.
    18. 18)
      • 5. Xiao, F., Wang, L.: ‘Consensus problems for high-dimensional multi-agent systems’, IET Control Theory Appl., 2007, 1, (3), pp. 830837.
    19. 19)
      • 34. Su, H.S., Qiu, Y., Wang, L.: ‘Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances’, ISA Trans., 2017, 67, pp. 131139.
    20. 20)
      • 14. Palla, G., Barabási, A.L., Vicsek, T.: ‘Quantifying social group evolution’, Nature, 2007, 446, (7136), pp. 664667.
    21. 21)
      • 16. Liu, Y.Y.: ‘Theoretical progress and practical challenges in controlling complex networks’, Natl. Sci. Rev., 2014, 1, (3), pp. 341343.
    22. 22)
      • 9. Long, M.K., Su, H.S., Liu, B.: ‘Group controllability of two-time-scale multi-agent networks’, J. Franklin Inst., 2018, 355, (13), pp. 60456061.
    23. 23)
      • 4. Yu, W.W., Chen, G.R., Cao, M., et al: ‘Second-order consensus for multi-agent systems with directed topologies and nonlinear dynamics’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2010, 40, (3), pp. 881891.
    24. 24)
      • 26. Wang, X.L., Su, H.S., Chen, M.Z.Q., et al: ‘Reaching non-negative edge consensus of networked dynamical systems’, IEEE Trans. Cybern., 2018, 48, (9), pp. 27122722.
    25. 25)
      • 17. Su, H.S., Wu, H., Lam, J.: ‘Positive edge-consensus for nodal networks via output feedback’, IEEE Trans. Autom. Control, 2018, doi: 10.1109/TAC.2018.2845694.
    26. 26)
      • 19. Nepusz, T., Vicsek, T.: ‘Controlling edge dynamics in complex networks’, Nat. Phys., 2012, 8, (7), pp. 568573.
    27. 27)
      • 30. Chu, H.J., Yuan, J.Q., Zhang, W.D.: ‘Observer-based adaptive consensus tracking for linear multi-agent systems with input saturation’, IET Control Theory Appl., 2015, 9, (14), pp. 21242131.
    28. 28)
      • 10. Long, M.K., Su, H.S., Liu, B.: ‘Second-order controllability of two-time-scale multi-agent systems’, Appl. Math. Comput., 2019, 343, pp. 299313.
    29. 29)
      • 36. Lin, Z., Saberi, A., Stoorvogel, A.A.: ‘Semiglobal stabilization of linear discrete-time systems subject to input saturation via linear feedback an ARE-based approach’, IEEE Trans. Autom. Control, 1996, 41, (8), pp. 12031120.
    30. 30)
      • 22. Madani, R., Sojoudi, S., Lavaei, J.: ‘Convex relaxation for optimal power flow problem: mesh networks’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 199211.
    31. 31)
      • 33. Chen, M.Z.Q., Zhang, L., Su, H.S., et al: ‘Stabilizing solution and parameter dependence of modified algebraic Riccati equation with application to discrete-time network synchronization’, IEEE Trans. Autom. Control, 2015, 61, (1), pp. 228233.
    32. 32)
      • 38. Godsil, C., Royle, G.: ‘Algebraic graph theory’ (Springer, New York, NY, USA, 2001).
    33. 33)
      • 15. Slotine, J.J., Liu, Y.Y.: ‘Complex networks: the missing link’, Nat. Phys., 2012, 8, (8), pp. 512513.
    34. 34)
      • 27. Su, H.S., Wu, H., Chen, X., et al: ‘Positive edge consensus of complex networks’, IEEE Trans. Syst. Man Cybern., Syst., 2018, 48, (12), pp. 22422250.
    35. 35)
      • 11. Nedic, A., Ozdaglar, A., Parrilo, P.A.: ‘Constrained consensus and optimization in multi-agent networks’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 922938.
    36. 36)
      • 8. Su, H.S., Ye, Y., Qiu, Y., et al: ‘Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2018.2859436.
    37. 37)
      • 21. Hellmann, T., Staudigl, M.: ‘Evolution of social networks’, Eur. J. Oper. Res., 2014, 234, (3), pp. 583596.
    38. 38)
      • 20. Herty, M., Klar, A.: ‘Modeling, simulation, and optimization of traffic flow networks’, SIAM J. Sci. Comput., 2003, 25, (3), pp. 10661087.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5266
Loading

Related content

content/journals/10.1049/iet-cta.2018.5266
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading