access icon free Switched control strategy including time optimal control and robust dynamic output feedback for anaesthesia

Mimicking the medical practice, this study deals with the control of hypnosis during a surgical intervention thanks to a switched control strategy. The key idea consists in starting with an initial minimum time control for the induction phase followed by a dynamic output feedback for the maintenance phase. The objective during the first phase is to bring the patient from its awake state to a final state corresponding to some given depth of hypnosis, measured by the BIS (Bispectral index), within a minimum time. Then, once the patient state is close to the desired target, the control is switched to a dynamic output feedback ensuring that the BIS stays in a given interval taking into account the saturation of the actuator and the multi-time scale dynamics in the anaesthesia model. The positivity of the system is also preserved thanks to the use of input saturation and state constraints. The stability of the switched control strategy is addressed and the theoretical conditions are evaluated on different case studies.

Inspec keywords: robust control; control system synthesis; time optimal control; medical control systems; feedback; surgery; switching systems (control)

Other keywords: hypnosis; BIS; anaesthesia model; maintenance phase; induction phase; stability; multitime scale dynamics; robust dynamic output feedback; surgical intervention; time optimal control; switched control strategy; minimum time control; actuator; bispectral index; patient state

Subjects: Biological and medical control systems; Control system analysis and synthesis methods; Optimal control; Stability in control theory; Time-varying control systems

References

    1. 1)
      • 20. Rocha, C., Mendonça, T., Silva, M.E.: ‘Individualizing propofol dosage: a multivariate linear model approach’, J. Clin. Monit. Comput., 2014, 28, (6), pp. 525536.
    2. 2)
      • 42. Gomes da Silva, J.M.Jr., Ghiggi, I., Tarbouriech, S.: ‘Non-rational dynamic output feedback for time-delay systems with saturating inputs’, Int. J. Control, 2008, 81, (4), pp. 557570.
    3. 3)
      • 1. Struys, M.M., De Smet, T., Versichelen, L.F., et al: ‘Comparison of closed-loop controlled administration of propofol using bispectral index as the controlled variable versus ‘standard practice’ controlled administration’, Anesthesiology, 2001, 95, (1), pp. 617.
    4. 4)
      • 19. Biswas, I., Mathew, P.J., Singh, R.S., et al: ‘Evaluation of closed-loop anesthesia delivery for propofol anesthesia in pediatric cardiac surgery’, Pediatr. Anesth., 2013, 23, (12), pp. 11451152.
    5. 5)
      • 40. Ionescu, C.M., Hodrea, R., De Keyser, R.: ‘Variable time-delay estimation for anesthesia control during intensive care’, IEEE Trans. Biomed. Eng., 2011, 58, (2), pp. 363369.
    6. 6)
      • 17. Le Guen, M., Liu, N., Tounou, F., et al: ‘Dexmedetomidine reduces propofol and remifentanil requirements during bispectral index-guided closed-loop anesthesia: a double-blind’, placebo-controlled trial', Anesth. Analg., 2014, 118, (5), pp. 946955.
    7. 7)
      • 18. Dussaussoy, C., Peres, M., Jaoul, V., et al: ‘Automated titration of propofol and remifentanil decreases the anesthesiologist's workload during vascular or thoracic surgery: a randomized prospective study’, J. Clin. Monit. Comput., 2014, 28, (1), pp. 3540.
    8. 8)
      • 25. Derendorf, H., Meibohm, B.: ‘Modeling of pharmacokinetic/pharmacodynamic (pk/pd) relationships: concepts and perspectives’, Pharm. Res., 1999, 16, (2), pp. 176185.
    9. 9)
      • 11. Syafiie, S., Ait Rami, M., Tadeo, F.: ‘Positive infusion of propofol drug during induction’. IEEE Int. Conf. on Industrial Engineering and Engineering Management, Macao, China, 2010, pp. 325328.
    10. 10)
      • 29. Bailey, J.M., Haddad, W.M.: ‘Drug dosing control in clinical pharmacology’, IEEE Control Syst. Mag., 2005, 25, (2), pp. 3551.
    11. 11)
      • 32. Berman, A., Neumann, M., Stern, R.J.: ‘Nonnegative matrices in dynamic systems’ (Wiley-Interscience, John Wiley and Sons, New York, USA, 1989).
    12. 12)
      • 10. Haddad, W.M., Chellaboina, V.S., Hui, Q.: ‘Nonnegative and compartmental dynamical systems’ (Princeton University Press, Princeton, NJ, 2010).
    13. 13)
      • 6. Nascu, I., Krieger, A., Ionescu, C.M., et al: ‘Advanced model based control studies for the induction and maintenance of intravenous anaesthesia’, IEEE Trans. Biomed. Eng., 2015, 62, (3), pp. 832841.
    14. 14)
      • 24. Liberzon, D.: ‘Switching in systems and control’ (Birkhäuser, New York, NY, 2003).
    15. 15)
      • 3. Absalom, A.R., Kenny, G.N.C.: ‘Closed-loop control of propofol anaesthesia using bispectral index: performance assessment in patients receiving computer-controlled propofol and manually controlled remifentanil infusions for minor surgery’, British J. Anaesth., 2003, 90, pp. 737741.
    16. 16)
      • 7. Fiacchini, M., Queinnec, I., Tarbouriech, S., et al: ‘Invariant based control of induction and maintenance phases for anesthesia’. 6th IFAC Conf. on Foundations of Systems Biology in Engineering, Magdeburg, Germany, 2016.
    17. 17)
      • 38. Naidu, D.S.: ‘Optimal control systems’ (CRC Press, Boca Raton, FL, 2002).
    18. 18)
      • 16. Liu, N., Chazot, T., Hamada, S., et al: ‘Closed-loop coadministration of propofol and remifentanil guided by bispectral index: a randomized multicenter study’, Anesth. Analg., 2011, 112, (3), pp. 546557.
    19. 19)
      • 8. Lemos, J.M., Caiado, D.V., Costa, B.A., et al: ‘Robust control of maintenance-phase anesthesia’, IEEE Control Syst. Mag., 2014, 34, (6), pp. 2438.
    20. 20)
      • 39. Scherer, C., Gahinet, P., Chilali, M.: ‘Multiobjective output-feedback control via LMI optimization’, IEEE Trans. Autom. Control, 1997, 42, pp. 896911.
    21. 21)
      • 23. Zabi, S., Queinnec, I., Garcia, G., et al: ‘Time-optimal control for the induction phase of hypnosis during anesthesia’, Control Eng. Pract., 2018, (submitted).
    22. 22)
      • 4. Soltész, K.: ‘On Automation in Anesthesia’, 2013, PhD thesis, Lund University, Sweden.
    23. 23)
      • 41. Sawaguchi, Y., Furutani, E., Shirakami, G., et al: ‘A model-predictive hypnosis control system under total intravenous anesthesia’, IEEE Trans. Biomed. Eng., 2008, 55, (3), pp. 874887.
    24. 24)
      • 2. Mackey, D.C.: ‘Can we finally conquer the problem of medical quality?’, Anesthesiology, 2012, 117, (2), pp. 225226.
    25. 25)
      • 27. Coppens, M.J., Eleveld, D.J., Proost, J.H., et al: ‘An evaluation of using population pharmacokinetic models to estimate pharmacodynamic parameters for propofol and bispectral index in children’, Anesthsiology, 2011, 115, (1), pp. 8393.
    26. 26)
      • 37. Athans, M., Falb, P.L.: ‘Optimal control: an introduction to the theory and its applications’ (Courier Corporation, New York, NY, 2013).
    27. 27)
      • 35. Zaccarian, L., Teel, A.R.: ‘Modern anti-windup synthesis: control augmentation for actuator saturation: control augmentation for actuator saturation. Princeton series in applied mathematics’ (Princeton University Press, Princeton, NJ, 2011).
    28. 28)
      • 15. Dumont, G.A., Martinez, A., Ansermino, J.M.: ‘Robust control of depth of anesthesia’, Int. J. Adapt. Control Signal Process., 2009, 23, (5), pp. 435454.
    29. 29)
      • 5. Haddad, W.M., Hayakawa, T., Bailey, J.M.: ‘Adaptive control for non-negative and compartmental dynamical systems with applications to general anesthesia’, Int. J. Adapt. Control Signal Process., 2003, 17, (3), pp. 209235.
    30. 30)
      • 30. Martins da Silva, M., Wigren, T., Mendonça, T.: ‘Nonlinear identification of a minimal neuromuscular blockade model in anesthesia’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 181188.
    31. 31)
      • 33. Shu, Z., Lam, J., Gao, H., et al: ‘Positive observers and dynamic output-feedback controllers for interval positive linear systems’, IEEE Trans. Circuits Syst. - I, 2008, 55, (10), pp. 32093222.
    32. 32)
      • 12. Nogueira, F.N., Mendonca, T.F., Rocha, P.: ‘Controlling the depth of anesthesia by a novel positive control strategy’, Comput. Methods Programs Biomed., 2014, 114, pp. e87e97.
    33. 33)
      • 14. Van Heusden, K., Dumont, G.A., Soltesz, K., et al: ‘Design and clinical evaluation of robust PID control of propofol anesthesia in children’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 491501.
    34. 34)
      • 22. Zabi, S., Queinnec, I., Tarbouriech, S., et al: ‘New approach for the control of anesthesia based on dynamics decoupling’. 9th IFAC Symp. on Biological and Medical Systems (BMS 2015), Berlin, Germany, 2015.
    35. 35)
      • 31. Zhang, X.-S., Roy, R.J.: ‘Derived fuzzy knowledge model for estimating the depth of anesthesia’, IEEE Trans. Biomed. Eng., 2001, 48, (3), pp. 312323.
    36. 36)
      • 36. Liberzon, D.: ‘Calculus of variations and optimal control theory: a concise introduction’ (Princeton University Press, Princeton, NJ, 2012).
    37. 37)
      • 28. Schnider, T.W., Minto, C.F.F, Gambus, P.L., et al: ‘The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers’, Anesthesiology, 1998, 88, (5), pp. 11701182.
    38. 38)
      • 21. Ebihara, Y.: ‘H2 analysis of LTI systems via conversion to extrernally positive systems’, IEEE Trans. Autom. Control, 2018, 63, (8), pp. 25662572.
    39. 39)
      • 13. Cacace, F., Farina, L., Setola, R., et al (Eds.): ‘Positive systems – theory and applications (POSTA 2016)(LNCIS471)' (Springer, Cham, Switzerland, 2017).
    40. 40)
      • 9. Cummings, G.C., Dixon, J., Kay, N.H., et al: ‘Dose requirements of ici 35,868 (propofol: ‘diprivan’) in a new formulation for induction of anaesthesia’, Anaesthesia, 1984, 39, (12), pp. 11681171.
    41. 41)
      • 34. Tarbouriech, S., Garcia, G., Gomes Da Silva, J.M.Jr., et al: ‘Stability and stabilization of linear systems with saturating actuators’ (Springer, London, UK, 2011).
    42. 42)
      • 26. Beck, C.L.: ‘Modeling and control of pharmacodynamics’, Eur. J. Control, 2015, 24, pp. 3349.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5260
Loading

Related content

content/journals/10.1049/iet-cta.2018.5260
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading