http://iet.metastore.ingenta.com
1887

Stability of fractional-order nonlinear systems by Lyapunov direct method

Stability of fractional-order nonlinear systems by Lyapunov direct method

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, by using a characterisation of functions having a fractional derivative, the authors propose a rigorous fractional Lyapunov function candidate method to analyse the stability of fractional-order nonlinear systems. First, they prove an inequality concerning the fractional derivatives of convex Lyapunov functions without the assumption of the existence of the derivative of pseudo-states. Second, they establish fractional Lyapunov functions to fractional-order systems without the assumption of the global existence of solutions. Their theorems fill the gaps and strengthen results in some existing papers.

References

    1. 1)
      • 1. Bandyopadhyay, B., Kamal, S.: ‘Stabilization and control of fractional order systems: A sliding mode approach(Lecture Notes in Electrical Engineering, 317) (Springer International Publishing, Switzerland, 2015),.
    2. 2)
      • 2. Oldham, K., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    3. 3)
      • 3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: ‘Fractional integrals and derivatives: theory and applications’ (Gordon and Breach Science Publishers, Switzerland, 1993).
    4. 4)
      • 4. Cong, N.D., Son, D.T., Siegmund, S., et al: ‘Linearized asymptotic stability for fractional differential equations’, Electron. J. Qual. Theory Diff. Equ., 2016, 39, pp. 113.
    5. 5)
      • 5. Cong, N.D., Son, D.T., Siegmund, S., et al: ‘An instability theorem for nonlinear fractional differential systems’, Dis. Continuous Dyn. Syst., B, 2017, 22, (8), pp. 30793090.
    6. 6)
      • 6. Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, pp. 19651969.
    7. 7)
      • 7. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.
    8. 8)
      • 8. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A.: ‘Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1-3), pp. 650659.
    9. 9)
      • 9. Chen, W., Dai, H., Song, Y., et al: ‘Convex Lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Appl., 2017, 11, (5), pp. 10701074.
    10. 10)
      • 10. Yunquan, Y., Chunfang, M.: ‘Mittag-Leffler stability of fractional order Lorenz and Lorenz family systems’, Nonlinear Dyn., 2016, 83, (3), pp. 12371246.
    11. 11)
      • 11. Liu, S., Jiang, W., Li, X., et al: ‘Lyapunov stability analysis of fractional nonlinear systems’, Appl. Math. Lett., 2016, 51, pp. 1319.
    12. 12)
      • 12. Fernadez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., et al: ‘Lyapunov functions for a class of nonlinear systems using Caputo derivative’, Commun. Nonlinear Sci. Numer. Simul., 2017, 43, pp. 9199.
    13. 13)
      • 13. Lakshmikantham, V., Leela, S., Devi, J.: ‘Theory of fractional dynamic systems’ (Cambridge Scientific Publishers Ltd, England, 2009).
    14. 14)
      • 14. Diethelm, K.: ‘The analysis of fractional differential equations. an application-oriented exposition using differential operators of Caputo type’ (Lecture Notes in Mathematics, 2004) (Springer-Verlag, Berlin, 2010).
    15. 15)
      • 15. Vainikko, G.: ‘Which functions are fractionally differentiable?’, J. Anal. Appl., 2016, 35, pp. 465487.
    16. 16)
      • 16. Rockafellar, R.T.: ‘Convex analysis’ (Princeton University Press, Princeton, New Jersey, 1972).
    17. 17)
      • 17. Heinonen, J. (2005). ‘Lectures on Lipschitz analysis’. Technical Report, University of Jyväskylä.
    18. 18)
      • 18. Baleanu, D., Mustafa, O.: ‘On the global existence of solutions to a class of fractional differential equations’, Comput. Math. Appl., 2010, 59, pp. 18351841.
    19. 19)
      • 19. Aghababa, M.P.: ‘Stabilization of a class of fractional-order chaotic systems using a non-smooth control methodology’, Nonlinear Dyn., 2017, 89, (2), pp. 13571370.
    20. 20)
      • 20. Ding, D., Qi, D., Wang, Q.: ‘Nonlinear Mittag–Leffler stabilisation of commensurate fractional order nonlinear systems’, IET Control Theory Appl., 2014, 9, (5), pp. 681690.
    21. 21)
      • 21. Shen, J., Lam, J.: ‘Non-existence of finite-time stable equilibria in fractional-order nonlinear systems’, Automatica, 2014, 50, pp. 547551.
    22. 22)
      • 22. Zhou, X.F., Hu, L.G., Jiang, W.: ‘Stability criterion for a class of nonlinear fractional differential systems’, Appl. Math. Lett., 2014, 28, pp. 2529.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5233
Loading

Related content

content/journals/10.1049/iet-cta.2018.5233
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address