Your browser does not support JavaScript!

Stability of fractional-order nonlinear systems by Lyapunov direct method

Stability of fractional-order nonlinear systems by Lyapunov direct method

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, by using a characterisation of functions having a fractional derivative, the authors propose a rigorous fractional Lyapunov function candidate method to analyse the stability of fractional-order nonlinear systems. First, they prove an inequality concerning the fractional derivatives of convex Lyapunov functions without the assumption of the existence of the derivative of pseudo-states. Second, they establish fractional Lyapunov functions to fractional-order systems without the assumption of the global existence of solutions. Their theorems fill the gaps and strengthen results in some existing papers.


    1. 1)
      • 22. Zhou, X.F., Hu, L.G., Jiang, W.: ‘Stability criterion for a class of nonlinear fractional differential systems’, Appl. Math. Lett., 2014, 28, pp. 2529.
    2. 2)
      • 14. Diethelm, K.: ‘The analysis of fractional differential equations. an application-oriented exposition using differential operators of Caputo type’ (Lecture Notes in Mathematics, 2004) (Springer-Verlag, Berlin, 2010).
    3. 3)
      • 19. Aghababa, M.P.: ‘Stabilization of a class of fractional-order chaotic systems using a non-smooth control methodology’, Nonlinear Dyn., 2017, 89, (2), pp. 13571370.
    4. 4)
      • 15. Vainikko, G.: ‘Which functions are fractionally differentiable?’, J. Anal. Appl., 2016, 35, pp. 465487.
    5. 5)
      • 20. Ding, D., Qi, D., Wang, Q.: ‘Nonlinear Mittag–Leffler stabilisation of commensurate fractional order nonlinear systems’, IET Control Theory Appl., 2014, 9, (5), pp. 681690.
    6. 6)
      • 1. Bandyopadhyay, B., Kamal, S.: ‘Stabilization and control of fractional order systems: A sliding mode approach(Lecture Notes in Electrical Engineering, 317) (Springer International Publishing, Switzerland, 2015),.
    7. 7)
      • 18. Baleanu, D., Mustafa, O.: ‘On the global existence of solutions to a class of fractional differential equations’, Comput. Math. Appl., 2010, 59, pp. 18351841.
    8. 8)
      • 21. Shen, J., Lam, J.: ‘Non-existence of finite-time stable equilibria in fractional-order nonlinear systems’, Automatica, 2014, 50, pp. 547551.
    9. 9)
      • 6. Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, pp. 19651969.
    10. 10)
      • 5. Cong, N.D., Son, D.T., Siegmund, S., et al: ‘An instability theorem for nonlinear fractional differential systems’, Dis. Continuous Dyn. Syst., B, 2017, 22, (8), pp. 30793090.
    11. 11)
      • 16. Rockafellar, R.T.: ‘Convex analysis’ (Princeton University Press, Princeton, New Jersey, 1972).
    12. 12)
      • 9. Chen, W., Dai, H., Song, Y., et al: ‘Convex Lyapunov functions for stability analysis of fractional order systems’, IET Control Theory Appl., 2017, 11, (5), pp. 10701074.
    13. 13)
      • 3. Samko, S.G., Kilbas, A.A., Marichev, O.I.: ‘Fractional integrals and derivatives: theory and applications’ (Gordon and Breach Science Publishers, Switzerland, 1993).
    14. 14)
      • 13. Lakshmikantham, V., Leela, S., Devi, J.: ‘Theory of fractional dynamic systems’ (Cambridge Scientific Publishers Ltd, England, 2009).
    15. 15)
      • 11. Liu, S., Jiang, W., Li, X., et al: ‘Lyapunov stability analysis of fractional nonlinear systems’, Appl. Math. Lett., 2016, 51, pp. 1319.
    16. 16)
      • 4. Cong, N.D., Son, D.T., Siegmund, S., et al: ‘Linearized asymptotic stability for fractional differential equations’, Electron. J. Qual. Theory Diff. Equ., 2016, 39, pp. 113.
    17. 17)
      • 17. Heinonen, J. (2005). ‘Lectures on Lipschitz analysis’. Technical Report, University of Jyväskylä.
    18. 18)
      • 12. Fernadez-Anaya, G., Nava-Antonio, G., Jamous-Galante, J., et al: ‘Lyapunov functions for a class of nonlinear systems using Caputo derivative’, Commun. Nonlinear Sci. Numer. Simul., 2017, 43, pp. 9199.
    19. 19)
      • 8. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A.: ‘Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1-3), pp. 650659.
    20. 20)
      • 2. Oldham, K., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    21. 21)
      • 10. Yunquan, Y., Chunfang, M.: ‘Mittag-Leffler stability of fractional order Lorenz and Lorenz family systems’, Nonlinear Dyn., 2016, 83, (3), pp. 12371246.
    22. 22)
      • 7. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.

Related content

This is a required field
Please enter a valid email address