http://iet.metastore.ingenta.com
1887

Multi-rate model predictive control algorithm for systems with fast-slow dynamics

Multi-rate model predictive control algorithm for systems with fast-slow dynamics

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel multi-rate model predictive control (MPC) scheme for linear discrete-time systems subject to input constraints. The proposed scheme consists of two control layers, acting at two different timescales. At a slow timescale, the outputs associated with the slow dynamics are steered to their reference values while at a fast timescale, a shrinking horizon MPC regulator is designed to refine the control action computed at the slow timescale. The proposed control scheme shows to be particularly useful, not only to control systems with different open-loop dynamics but also in cases when the controlled variables are required to have different responsiveness in a closed loop. Simulation results on a fire tube boiler example are reported, which indeed show that different dynamics can be efficiently imposed on the controlled variables, i.e. the boiler pressure and the water level, in the presence of variations of the disturbance represented by the steam output flow rate.

References

    1. 1)
      • 1. Naidu, D.: ‘Singular perturbations and time scales in control theory and applications: an overview’, Dyn. Continuous Dis. Impuls. Syst. B, 2002, 9, pp. 233278.
    2. 2)
      • 2. Scattolini, R.: ‘Architectures for distributed and hierarchical model predictive control–a review’, J. Process Control, 2009, 19, (5), pp. 723731.
    3. 3)
      • 3. Vasquez, J.R., Perez, R.R., Moriano, J.S., et al: ‘Advanced control system of the steam pressure in a fire-tube boiler’, IFAC Proc., 2008, 41, (2), pp. 1102811033.
    4. 4)
      • 4. Camacho, E.F., Alba, C.B.: ‘Model predictive control’ (Springer Science & Business Media, 2013).
    5. 5)
      • 5. Maciejowski, J.M.: ‘Predictive control: with constraints’ (Pearson Education, 2002).
    6. 6)
      • 6. Rawlings, J.B., Mayne, D.Q.: ‘Model predictive control: theory and design’ (Nob Hill Pub., 2009).
    7. 7)
      • 7. Scokaert, P.O., Rawlings, J.B.: ‘Constrained linear quadratic regulation’, IEEE Trans. Autom. Control, 1998, 43, (8), pp. 11631169.
    8. 8)
      • 8. Chen, X., Heidarinejad, M., Liu, J., et al: ‘Model predictive control of nonlinear singularly perturbed systems: application to a large-scale process network’, J Process Control, 2011, 21, (9), pp. 12961305.
    9. 9)
      • 9. Chen, X., Heidarinejad, M., Liu, J., et al: ‘Composite fast-slow MPC design for nonlinear singularly perturbed systems’, AIChE J., 2012, 58, (6), pp. 18021811.
    10. 10)
      • 10. Wogrin, M., Glielmo, L.: ‘An MPC scheme with guaranteed stability for linear singularly perturbed systems’. 49th Proc. IEEE Conf. on Decision and Control, 2010, pp. 52895295.
    11. 11)
      • 11. Brdys, M.A., Grochowski, M., Gminski, T., et al: ‘Hierarchical predictive control of integrated wastewater treatment systems’, Control Eng. Pract., 2008, 16, (6), pp. 751767.
    12. 12)
      • 12. Van-Henten, E.J., Bontsema, J.: ‘Time-scale decomposition of an optimal control problem in greenhouse climate management’, Control Eng. Pract., 2009, 17, (1), pp. 8896.
    13. 13)
      • 13. Heemels, W.P.M.H., Donkers, M.C.F.: ‘Model-based periodic event-triggered control for linear systems’, Automatica, 2013, 49, (3), pp. 698711.
    14. 14)
      • 14. Yu, H., Hao, F.: ‘Periodic event-triggered state-feedback control for discrete-time linear systems’, J Franklin Inst., 2016, 353, pp. 18091828.
    15. 15)
      • 15. Pawlowski, A., Guzmán, J.L., Berenguel, M., et al: ‘Event-based GPC for multivariable processes: a practical approach with sensor deadband’, IEEE Trans. Control Syst. Technol., 2017, 25, (5), pp. 16211633.
    16. 16)
      • 16. Kuehn, C.: ‘‘Multiple time scale dynamics’, vol. 191 (Springer, 2015).
    17. 17)
      • 17. Saksena, V.R., O'reilly, J., Kokotovic, P.V.: ‘Singular perturbations and time-scale methods in control theory: survey 1976–1983’, Automatica, 1984, 20, (3), pp. 273293.
    18. 18)
      • 18. Ortiz, G.: ‘Modeling of fire-tube boilers’, Appl Therm Eng, 2011, 31, pp. 34633478.
    19. 19)
      • 19. Dukelow, S.G., Lipták, B.G., Cheng, X., et al: ‘Boiler control and optimization’, in Lipták, B.G. (Ed.): ‘Process control: ‘instrument engineers’ handbook’ (Elsevier Science, 2013), pp. 15721631.
    20. 20)
      • 20. Feliu, B.V., Rivas, P.R., Castillo, G.F., et al: ‘Fire tube industrial boilers. Fractional control’, Autom. Instrum., 2005, 365, pp. 9095.
    21. 21)
      • 21. Vasquez, J.R.R., Perez, R.R., Moriano, J.S., et al: ‘Advanced control system of the steam pressure in a fire-tube boiler’, IFAC Proc. Vol., 2008, 41, (2), pp. 1102811033.
    22. 22)
      • 22. Hassanein, O.I., Aly, A.A.: ‘Genetic-PID control for a fire tube boiler’. IEEE Int. Conf. Comput. Cybern., 2004, pp. 1924.
    23. 23)
      • 23. Bejan, A., Kraus, A.D.: ‘‘Heat transfer handbook’, vol. 1 (John Wiley & Sons, 2003).
    24. 24)
      • 24. Mhaskar, P., El.Farra, N.H., Christofides, P.D.: ‘Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control’, Syst. Control Lett., 2006, 55, pp. 650659.
    25. 25)
      • 25. Mahmood, M., Mhaskar, P.: ‘Enhanced stability regions for model predictive control of nonlinear process systems’, AIChE J., 2008, 54, (6), pp. 14871498.
    26. 26)
      • 26. Chmielewski, D.J., Manousiouthakis, V: ‘On constrained infinite-time linear quadratic optimal control’. 35th Proc. IEEE Conf. on Decision and Control, 1996, pp. 13191324.
    27. 27)
      • 27. Lofberg, J: ‘Yalmip: a toolbox for modeling and optimization in matlab’. IEEE Int. Symp. on Computer Aided Control Systems Design, 2004, pp. 284289.
    28. 28)
      • 28. Herceg, M., Kvasnica, M., Jones, C.N., et al: ‘Multi-parametric toolbox 3.0’. European Control Conf., 2013, pp. 502510.
    29. 29)
      • 29. Ngo, K.T., Erickson, K.T.: ‘Stability of discrete-time matrix polynomials’, IEEE Trans. Autom. Control, 1997, 42, (4), pp. 538542.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5220
Loading

Related content

content/journals/10.1049/iet-cta.2018.5220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address