access icon free Improving control effort in output feedback sliding mode control of sampled-data systems

In this study, the problem of output feedback sliding mode control of linear sampled-data multi-input–multi-output systems is considered. Existing sliding mode control schemes can attenuate the influence of an external disturbance by driving system states onto a sliding surface. However, they can exhibit high gains during transients, which can be where T is the sampling time period. To address this problem, a new strategy, which employs disturbance approximation, is proposed so that the control effort will be . The new method avoids deadbeat phenomena and hence, it will be less sensitive to noise. Theoretical analysis is provided to show the convergence and robustness of the proposed method. Simulations were conducted to show the efficiency of the proposed approach.

Inspec keywords: sampled data systems; feedback; control system synthesis; robust control; variable structure systems

Other keywords: mode control schemes; disturbance approximation; linear sampled-data multiinput–multioutput systems; control effort; external disturbance; sliding surface; sampled-data systems; sampling time period; system states; output feedback

Subjects: Multivariable control systems; Control system analysis and synthesis methods; Discrete control systems; Stability in control theory

References

    1. 1)
      • 9. Behera, A.K., Bandyopadhyay, B.: ‘Self-triggering-based sliding-mode control for linear systems’, IET Control Theory Applic., 2015, 9, (17), pp. 25412547.
    2. 2)
      • 24. Srinathkumar, S: ‘‘Eigenvalue/eigenvector assignment using output feedback’ (Langley Research Center, Hampton, Virginia, 1978), 1118.
    3. 3)
      • 2. Drazenovic, B.: ‘The invariance conditions in variable structure systems’, Automatica, 1969, 5, (3), pp. 287295.
    4. 4)
      • 5. Abidi, K., Xu, J.-X., Xinghuo, Y.: ‘On the discrete-time integral sliding-mode control’, IEEE Trans. Autom. Control, 2007, 52, pp. 709715.
    5. 5)
      • 22. Utkin, V.I., Drakunov, S: ‘On discrete-time sliding mode control’. Proc. IFAC Symp. Nonlinear Control Systems, Capri, Italy, 1989, pp. 484489.
    6. 6)
      • 23. Kato, T.: ‘Perturbation theory for linear operators’ (Springer, Berlin, 1995).
    7. 7)
      • 8. Xu, Q.: ‘Enhanced discrete-time sliding mode strategy with application to piezoelectric actuator control’, IET Control Theory Applic., 2013, 7, (18), pp. 21532163.
    8. 8)
      • 4. Su, W.C., Drakunov, S.V., Özguner, Ü.: ‘An O(T2) boundary layer in sliding mode for sampled-data systems’, IEEE Trans. Autom. Control, 2000, 45, pp. 482485.
    9. 9)
      • 16. Nguyen, T., Su, W.C., Gajic, Z: ‘On O(T2) state regulation with output feedback sliding mode control for sampled-data systems’. Proc. of the American Control Conf., Baltimore, USA, 2010, pp. 18231828.
    10. 10)
      • 12. Nguyen, T., Su, W.C., Gajic, Z.: ‘Output feedback sliding mode control for sampled data systems’, IEEE Trans. Autom. Control, 2010, 55, (7), pp. 16841689.
    11. 11)
      • 7. Niu, Y., Ho, D.W.C., Wang, Z.: ‘Improved sliding mode control for discrete-time systems via reaching law’, IET Control Theory Applic., 2010, 4, (11), pp. 22452251.
    12. 12)
      • 20. Middleton, R., Goodwin, G.: ‘Improved finite word length characteristics in digital control using delta operators’, IEEE Trans. Autom. Control, 1986, 31, (11), pp. 10151021.
    13. 13)
      • 17. Nguyen, T., Azimi, V., Su, W.C., et al: ‘Improvement of control signals in output feedback sliding mode control of sampled-data systems’. IEEE American Control Conf. (ACC 2017), Seattle, USA, 2017, pp. 57625767.
    14. 14)
      • 19. Edwards, C., Spurgeon, S.: ‘Sliding mode stabilization of uncertain systems using only output information’, Int. J. Control, 1995, 62, pp. 11291144.
    15. 15)
      • 18. Kokotovic, P., Khalil, H., O'Reilly, J.: ‘Singular perturbation methods in control: analysis and design’ (Academic Press, Orlando, FL, 1986).
    16. 16)
      • 10. Lin, C.F., Su, W.C.: ‘Reconstructing sliding surfaces for siso variable structure output feedback control systems using inverse method’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19701975.
    17. 17)
      • 13. Milosavljevic, C., Perunicic-Drazenovic, B., Veselic, B.: ‘Discrete-time velocity servo system design using sliding mode control approach with disturbance compensation’, IEEE Trans. Control Syst. Technol., 2013, 9, pp. 920927.
    18. 18)
      • 15. Mitic, D., Milosavljevic, C.: ‘Sliding mode-based minimum variance and generalized minimum variance controls with O(T2) and O(T3) accuracy’, Electr. Eng., 2004, 86, pp. 229237.
    19. 19)
      • 21. Kumari, K., Bandyopadhyay, B., Behera, A.K., et al: ‘Event-triggered sliding mode control for delta operator systems’. 42nd Annual Conf. of the IEEE Industrial Electronics Society (IECON 2016), Florence, Italy, 2016, pp. 148153.
    20. 20)
      • 1. Edwards, C., Spurgeon, S.: ‘Sliding mode control: theory and applications’ (CRC Press, London, 1998).
    21. 21)
      • 14. Nguyen, T., Su, W.C., Gajic, Z., et al: ‘Higher accuracy output feedback sliding mode control of sampled-data systems’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 31773182.
    22. 22)
      • 11. Lai, N.O., Edwards, C., Spurgeon, S.K.: ‘On output tracking using dynamic output feedback discrete-time sliding-mode controllers’, IEEE Trans. Autom. Control, 2007, 52, pp. 19751981.
    23. 23)
      • 6. Du, H., Yu, X., Chen, M.Z.Q., et al: ‘Chattering-free discrete-time sliding mode control’, Automatica, 2016, 68, pp. 8791.
    24. 24)
      • 3. Milosavljevic, C.: ‘General conditions for the existence of quasi-sliding mode on the switching hyper-plane in discrete variable structure systems’, Autom. Remote Control, 1985, 46, (3), pp. 307314.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5080
Loading

Related content

content/journals/10.1049/iet-cta.2018.5080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading