Ellipsoidal state estimation based on sum of squares for non-linear systems with unknown but bounded noise
- Author(s): Paolo Massioni 1 ; Nikolay N. Salnikov 2 ; Gérard Scorletti 3
-
-
View affiliations
-
Affiliations:
1:
Laboratoire Ampère CNRS, INSA Lyon , Université de Lyon , 69621 Villeurbanne CEDEX , France ;
2: Institute of Space Research of National Academy of Sciences of Ukraine and State Space Agency of Ukraine , Kiev , Ukraine ;
3: Laboratoire Ampère CNRS, Ecole Centrale Lyon , Université de Lyon , 69134 Ecully CEDEX , France
-
Affiliations:
1:
Laboratoire Ampère CNRS, INSA Lyon , Université de Lyon , 69621 Villeurbanne CEDEX , France ;
- Source:
Volume 13, Issue 12,
13
August
2019,
p.
1955 – 1961
DOI: 10.1049/iet-cta.2018.5072 , Print ISSN 1751-8644, Online ISSN 1751-8652
- « Previous Article
- Table of contents
- Next Article »
This brief concerns the set-theoretic recursive state estimation of non-linear systems with polynomial dynamics, making use of ellipsoidal bounds. The sum of squares approach is used to construct an optimal ellipsoid containing the intersection of sets obtained with the use of non-linear system equations and measurement equations. The properties of the proposed filter are illustrated with two examples, one concerning the simultaneous estimation of parameters and state of a linear system, and the other on the Euler equations of the rigid body rotational motion.
Inspec keywords: linear systems; state estimation; recursive estimation; set theory; least squares approximations; polynomials
Other keywords: ellipsoidal bounds; polynomial dynamics; optimal ellipsoid; linear system; ellipsoidal state estimation; nonlinear systems; set-theoretic recursive state estimation; unknown but bounded noise; nonlinear system equations
Subjects: Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Filtering methods in signal processing; Combinatorial mathematics; Simulation, modelling and identification; Algebra; Linear control systems
References
-
-
1)
-
3. Arulampalam, M.S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174–188.
-
-
2)
-
30. Zou, A.-M., de Ruiter, A.H.J., Kumar, K.D.: ‘Finite-time attitude tracking control for rigid spacecraft with control input constraints’, IET Control Theory Appl., 2017, 11, (7), pp. 931–940.
-
-
3)
-
1. Haykin, S.S.: ‘Kalman filtering and neural networks’ (Wiley Online Library, New York, 2001).
-
-
4)
-
29. Poksawat, P., Wang, L., Mohamed, A.: ‘Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles’, IET Control Theory Appl., 2016, 10, (17), pp. 2233–2242.
-
-
5)
-
18. Salnikov, N.N.: ‘Estimation of state and parameters of dynamic system with the use of ellipsoids at the lack of a priori information on estimated quantities’, J. Autom. Inf. Sci., 2014, 46, (4), pp. 60–75.
-
-
6)
-
25. Löfberg, J: ‘Pre- and post-processing sum-of-squares programs in practice’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 1007–1011.
-
-
7)
-
17. Blanchini, F., Miani, S.: ‘Set-theoretic methods in control’ (Springer, London, 2008).
-
-
8)
-
26. Papachristodoulou, A., Anderson, J., Valmorbida, G., et al: ‘SOSTOOLS: Sum of squares optimization toolbox for MATLAB’, 2013. Available at http://www.cds.caltech.edu/sostools.
-
-
9)
-
4. Willems, J.C.: ‘Deterministic least squares filtering’, J. Econometrics, 2004, 118, (1-2), pp. 341–373.
-
-
10)
-
8. Chernousko, F.L.: ‘State estimation for dynamic systems’ (CRC Press, Boca Raton, 1993).
-
-
11)
-
7. Calafiore, G., El Ghaoui, L.: ‘Ellipsoidal bounds for uncertain linear equations and dynamical systems’, Automatica, 2004, 40, (5), pp. 773–787.
-
-
12)
-
16. Schweppe, F.C.: ‘Uncertain dynamic systems’ (Prentice-Hall, Upper Saddle River, 1973).
-
-
13)
-
11. Kurzhanski, A.B., Valyi, I.: ‘Ellipsoidal calculus for estimation and control’ (Nelson Thornes, Cheltenham, 1997).
-
-
14)
-
24. Lasserre, J.B.: ‘Moments, positive polynomials and their applications’, vol. 1 (World Scientific, Singapore, 2009).
-
-
15)
-
5. Schweppe, F.: ‘Recursive state estimation: unknown but bounded errors and system inputs’, IEEE Trans. Autom. Control, 1968, 13, (1), pp. 22–28.
-
-
16)
-
10. Kieffer, M., Walter, E.: ‘Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements’, IFAC Proc. Vol., 2006, 39, (9), pp. 685–690.
-
-
17)
-
15. Milanese, M., Belforte, G.: ‘Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators’, IEEE Trans. Autom. Control, 1982, 27, (2), pp. 408–414.
-
-
18)
-
12. Le, V.T.H., Stoica, C., Alamo, T., et al: ‘Zonotopes: from guaranteed state-estimation to control’ (John Wiley & Sons, Hoboken, 2013).
-
-
19)
-
22. Massioni, P., Scorletti, G.: ‘Guaranteed systematic simulation of discrete-time systems defined by polynomial expressions via convex relaxations’, Int. J. Robust Nonlinear Control, 2018, 28, (3), pp. 1062–1073.
-
-
20)
-
20. Parrilo, P.A.: ‘Semidefinite programming relaxations for semialgebraic problems’, Math. Program., 2003, 96, pp. 293–320.
-
-
21)
-
23. Krivine, J.-L.: ‘Anneaux préordonnés’, J. Anal Math., 1964, 12, (1), pp. 307–326.
-
-
22)
-
6. Belforte, G., Tay, T.T.: ‘Two new estimation algorithms for linear models with unknown but bounded measurement noise’, IEEE Trans. Autom. Control, 1993, 38, (8), pp. 1273–1279.
-
-
23)
-
13. Liu, Y., Zhao, Y., Wu, F.: ‘Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances’, IET Control Theory Appl., 2016, 10, (4), pp. 431–442.
-
-
24)
-
19. Shao, X., Zhao, Z., Liu, F., et al: ‘Ellipsoidal set based robust particle filtering for recursive bayesian state estimation’. 10th IEEE Int. Conf. on Control and Automation (ICCA), Hangzhou, China, 2013, pp. 568–573.
-
-
25)
-
21. Chesi, G.: ‘LMI techniques for optimization over polynomials in control: a survey’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 2500–2510.
-
-
26)
-
14. Mazenc, F., Dinh, T.N., Niculescu, S.I.: ‘Interval observers for discrete-time systems’, Int. J. Robust Nonlinear Control, 2014, 24, (17), pp. 2867–2890.
-
-
27)
-
9. Jaulin, L., Kieffer, M., Didrit, O., et al: ‘Applied interval analysis’ (Springer, London, 2001).
-
-
28)
-
28. Bong, W.: ‘Space vehicle dynamics and control’ (American Institute of Aeronautics and Astronautics, Reston, 2008).
-
-
29)
-
2. Kalman, R.E.: ‘A new approach to linear filtering and prediction problems’, J. Basic Eng., 1960, 82, (1), pp. 35–45.
-
-
30)
-
27. ApS, MOSEK: 2017, ‘The MOSEK optimization toolbox for MATLAB manual’. Version 8.1..
-
-
1)

Related content
