Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Ellipsoidal state estimation based on sum of squares for non-linear systems with unknown but bounded noise

This brief concerns the set-theoretic recursive state estimation of non-linear systems with polynomial dynamics, making use of ellipsoidal bounds. The sum of squares approach is used to construct an optimal ellipsoid containing the intersection of sets obtained with the use of non-linear system equations and measurement equations. The properties of the proposed filter are illustrated with two examples, one concerning the simultaneous estimation of parameters and state of a linear system, and the other on the Euler equations of the rigid body rotational motion.

References

    1. 1)
      • 3. Arulampalam, M.S., Maskell, S., Gordon, N., et al: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188.
    2. 2)
      • 30. Zou, A.-M., de Ruiter, A.H.J., Kumar, K.D.: ‘Finite-time attitude tracking control for rigid spacecraft with control input constraints’, IET Control Theory Appl., 2017, 11, (7), pp. 931940.
    3. 3)
      • 1. Haykin, S.S.: ‘Kalman filtering and neural networks’ (Wiley Online Library, New York, 2001).
    4. 4)
      • 29. Poksawat, P., Wang, L., Mohamed, A.: ‘Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles’, IET Control Theory Appl., 2016, 10, (17), pp. 22332242.
    5. 5)
      • 18. Salnikov, N.N.: ‘Estimation of state and parameters of dynamic system with the use of ellipsoids at the lack of a priori information on estimated quantities’, J. Autom. Inf. Sci., 2014, 46, (4), pp. 6075.
    6. 6)
      • 25. Löfberg, J: ‘Pre- and post-processing sum-of-squares programs in practice’, IEEE Trans. Autom. Control, 2009, 54, (5), pp. 10071011.
    7. 7)
      • 17. Blanchini, F., Miani, S.: ‘Set-theoretic methods in control’ (Springer, London, 2008).
    8. 8)
      • 26. Papachristodoulou, A., Anderson, J., Valmorbida, G., et al: ‘SOSTOOLS: Sum of squares optimization toolbox for MATLAB’, 2013. Available at http://www.cds.caltech.edu/sostools.
    9. 9)
      • 4. Willems, J.C.: ‘Deterministic least squares filtering’, J. Econometrics, 2004, 118, (1-2), pp. 341373.
    10. 10)
      • 8. Chernousko, F.L.: ‘State estimation for dynamic systems’ (CRC Press, Boca Raton, 1993).
    11. 11)
      • 7. Calafiore, G., El Ghaoui, L.: ‘Ellipsoidal bounds for uncertain linear equations and dynamical systems’, Automatica, 2004, 40, (5), pp. 773787.
    12. 12)
      • 16. Schweppe, F.C.: ‘Uncertain dynamic systems’ (Prentice-Hall, Upper Saddle River, 1973).
    13. 13)
      • 11. Kurzhanski, A.B., Valyi, I.: ‘Ellipsoidal calculus for estimation and control’ (Nelson Thornes, Cheltenham, 1997).
    14. 14)
      • 24. Lasserre, J.B.: ‘Moments, positive polynomials and their applications’, vol. 1 (World Scientific, Singapore, 2009).
    15. 15)
      • 5. Schweppe, F.: ‘Recursive state estimation: unknown but bounded errors and system inputs’, IEEE Trans. Autom. Control, 1968, 13, (1), pp. 2228.
    16. 16)
      • 10. Kieffer, M., Walter, E.: ‘Guaranteed nonlinear state estimation for continuous-time dynamical models from discrete-time measurements’, IFAC Proc. Vol., 2006, 39, (9), pp. 685690.
    17. 17)
      • 15. Milanese, M., Belforte, G.: ‘Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators’, IEEE Trans. Autom. Control, 1982, 27, (2), pp. 408414.
    18. 18)
      • 12. Le, V.T.H., Stoica, C., Alamo, T., et al: ‘Zonotopes: from guaranteed state-estimation to control’ (John Wiley & Sons, Hoboken, 2013).
    19. 19)
      • 22. Massioni, P., Scorletti, G.: ‘Guaranteed systematic simulation of discrete-time systems defined by polynomial expressions via convex relaxations’, Int. J. Robust Nonlinear Control, 2018, 28, (3), pp. 10621073.
    20. 20)
      • 20. Parrilo, P.A.: ‘Semidefinite programming relaxations for semialgebraic problems’, Math. Program., 2003, 96, pp. 293320.
    21. 21)
      • 23. Krivine, J.-L.: ‘Anneaux préordonnés’, J. Anal Math., 1964, 12, (1), pp. 307326.
    22. 22)
      • 6. Belforte, G., Tay, T.T.: ‘Two new estimation algorithms for linear models with unknown but bounded measurement noise’, IEEE Trans. Autom. Control, 1993, 38, (8), pp. 12731279.
    23. 23)
      • 13. Liu, Y., Zhao, Y., Wu, F.: ‘Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances’, IET Control Theory Appl., 2016, 10, (4), pp. 431442.
    24. 24)
      • 19. Shao, X., Zhao, Z., Liu, F., et al: ‘Ellipsoidal set based robust particle filtering for recursive bayesian state estimation’. 10th IEEE Int. Conf. on Control and Automation (ICCA), Hangzhou, China, 2013, pp. 568573.
    25. 25)
      • 21. Chesi, G.: ‘LMI techniques for optimization over polynomials in control: a survey’, IEEE Trans. Autom. Control, 2010, 55, (11), pp. 25002510.
    26. 26)
      • 14. Mazenc, F., Dinh, T.N., Niculescu, S.I.: ‘Interval observers for discrete-time systems’, Int. J. Robust Nonlinear Control, 2014, 24, (17), pp. 28672890.
    27. 27)
      • 9. Jaulin, L., Kieffer, M., Didrit, O., et al: ‘Applied interval analysis’ (Springer, London, 2001).
    28. 28)
      • 28. Bong, W.: ‘Space vehicle dynamics and control’ (American Institute of Aeronautics and Astronautics, Reston, 2008).
    29. 29)
      • 2. Kalman, R.E.: ‘A new approach to linear filtering and prediction problems’, J. Basic Eng., 1960, 82, (1), pp. 3545.
    30. 30)
      • 27. ApS, MOSEK: 2017, ‘The MOSEK optimization toolbox for MATLAB manual’. Version 8.1..
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5072
Loading

Related content

content/journals/10.1049/iet-cta.2018.5072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address