http://iet.metastore.ingenta.com
1887

Mitigation of communication failures in distributed model predictive control strategies

Mitigation of communication failures in distributed model predictive control strategies

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Information sharing among local controllers is the key feature of any distributed model predictive control (DMPC) strategy. This study addresses the problem of communication failures in DMPC strategies and proposes a distributed solution to cope with them. The proposal consists in an information-exchange protocol that is based on distributed projection dynamics. By applying this protocol as a complementary plug-in to a DMPC strategy, the controllers improve the resilience against communication failures and relax the requirements of the communication network. Furthermore, a reconfiguration algorithm, which is a contingency procedure to maintain the connectivity of the network, and a discussion on the selection criteria of the information-sharing network are also presented. In order to demonstrate the performance and advantages of the proposed approach when it is applied to a DMPC strategy, a case study of a power-network control problem is provided.

References

    1. 1)
      • 1. García, C.E., Prett, D.M., Morari, M.: ‘Model predictive control: theory and practice–A survey’, Automatica, 1989, 25, (3), pp. 335348.
    2. 2)
      • 2. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.
    3. 3)
      • 3. Scattolini, R.: ‘Architectures for distributed and hierarchical model predictive control–A review’, J. Process Control, 2009, 19, (5), pp. 723731.
    4. 4)
      • 4. Christofides, P.D., Scattolini, R., Muñoz de la Peṅa, D., et al: ‘Distributed model predictive control: a tutorial review and future research directions’, Comput. Chem. Eng., 2013, 51, pp. 2141.
    5. 5)
      • 5. Farina, M., Scattolini, R.: ‘Distributed predictive control: a non-cooperative algorithm with neighbor-to-neighbor communication for linear systems’, Automatica, 2012, 48, (6), pp. 10881096.
    6. 6)
      • 6. Conte, C., Jones, C.N., Morari, M., et al: ‘Distributed synthesis and stability of cooperative distributed model predictive control for linear systems’, Automatica, 2016, 69, pp. 117125.
    7. 7)
      • 7. Liu, X., Zhang, Y., Lee, K.Y.: ‘Coordinated distributed MPC for load frequency control of power system with wind farms’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 51405150.
    8. 8)
      • 8. Stewart, B.T., Venkat, A.N., Rawlings, J.B., et al: ‘Cooperative distributed model predictive control’, Syst. Control Lett., 2010, 59, (8), pp. 460469.
    9. 9)
      • 9. Tarisciotti, L., Calzo, G.L., Gaeta, A., et al: ‘A distributed model predictive control strategy for back-to-back converters’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 58675878.
    10. 10)
      • 10. Ge, X., Yang, F., Han, Q.L.: ‘Distributed networked control systems: a brief overview’, Inf. Sci., 2017, 380, pp. 117131.
    11. 11)
      • 11. Li, S., Zhang, Y., Zhu, Q.: ‘Nash-optimization enhanced distributed model predictive control applied to the shell benchmark problem’, Inf. Sci., 2005, 170, (2), pp. 329349.
    12. 12)
      • 12. Heidarinejad, M., Liu, J., Muñoz de la Peṅa, D., et al: ‘Handling communication disruptions in distributed model predictive control’, J. Process Control, 2011, 21, (1), pp. 173181.
    13. 13)
      • 13. Schaich, R.M., Müller, M.A., Allgöwer, F.: ‘A distributed model predictive control scheme for networks with communication failure’. IFAC Proc. Volumes, Cape Town, South Africa, 2014, vol. 47, (3), pp. 1200412009.
    14. 14)
      • 14. Müller, M.A., Reble, M., Allgöwer, F.: ‘Cooperative control of dynamically decoupled systems via distributed model predictive control’, Int. J. Robust Nonlinear Control, 2012, 22, (12), pp. 13761397.
    15. 15)
      • 15. Kumar, D., Al.Gherwi, , W., Budman, H.: ‘Robust-distributed MPC tolerant to communication loss’, Comput. Chem. Eng., 2016, 88, pp. 3038.
    16. 16)
      • 16. Nazari, M.H., Grijalva, S., Egerstedt, M.: ‘Distributed frequency regulation in the presence of communication failure’. Proc. of IEEE Power Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Minneapolis, USA, 2016, pp. 15.
    17. 17)
      • 17. Barreiro.Gomez, J., Obando, G., Quijano, N.: ‘Distributed population dynamics: optimization and control applications’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (2), pp. 304314.
    18. 18)
      • 18. Quijano, N., Ocampo.Martinez, C., Barreiro.Gomez, J., et al: ‘the role of population games and evolutionary dynamics in distributed control systems: the advantages of evolutionary game theory’, IEEE Control Systems, 2017, 37, (1), pp. 7097.
    19. 19)
      • 19. Mesbahi, M., Egerstedt, M.: ‘Graph theoretic methods in multiagent networks’ (Princeton University Press, Princeton, New Jersey, USA, 2010).
    20. 20)
      • 20. Pantoja, A., Quijano, N.: ‘A population dynamics approach for the dispatch of distributed generators’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45594567.
    21. 21)
      • 21. Kraning, M., Chu, E., Lavaei, J., et al: ‘Dynamic network energy management via proximal message passing’, Found. Trends Optim., 2014, 1, (2), pp. 73126.
    22. 22)
      • 22. Shi, W., Xie, X., Chu, C.C., et al: ‘Distributed optimal energy management in microgrids’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11371146.
    23. 23)
      • 23. Baker, K., Guo, J., Hug, G., et al: ‘Distributed MPC for efficient coordination of storage and renewable energy sources across control areas’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 9921001.
    24. 24)
      • 24. Giselsson, P., Doan, M.D., Keviczky, T., et al: ‘Accelerated gradient methods and dual decomposition in distributed model predictive control’, Automatica, 2013, 49, (3), pp. 829833.
    25. 25)
      • 25. Boyd, S., Vandenberghe, L.: ‘‘Convex optimization’, vol. 25 (Cambridge University Press, Cambridge, UK, 2010).
    26. 26)
      • 26. Chen, F., Cao, Y., Ren, W.: ‘Distributed average tracking of multiple time-varying reference signals with bounded derivatives’, IEEE Trans. Autom. Control, 2012, 57, (12), pp. 31693174.
    27. 27)
      • 27. Khalil, H.K.: ‘Nonlinear control’ (Pearson Education, Essex, England, 2015).
    28. 28)
      • 28. Olfati.Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    29. 29)
      • 29. Hatziargyriou, N., editor: ‘Microgrids: architectures and control’ (Wiley/IEEE Press, Chichester, West Sussex, UK, 2014, 1st edn.).
    30. 30)
      • 30. Liu, M., Shi, Y., Liu, X.: ‘Distributed MPC of aggregated heterogeneous thermostatically controlled loads in smart grid’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 11201129.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.5044
Loading

Related content

content/journals/10.1049/iet-cta.2018.5044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address