access icon free fault detection for linear discrete-time descriptor systems

Sensor fault detection of discrete-time descriptor systems with bounded disturbances is studied. The authors propose a new structure of a fault detection observer by augmenting the output, which can broaden the application scope. A criterion is used to achieve the fault sensitivity and disturbance attenuation ability of the residual simultaneously. The residual generation and time-varying threshold calculation are integrated together based on analysis. Furthermore, sufficient conditions for the performance of the proposed observer are formulated in terms of linear matrix inequalities. Numerical simulations of a direct current motor and a flight vehicle are conducted to verify the applicability of the proposed fault detection observer design method.

Inspec keywords: discrete time systems; control system synthesis; linear matrix inequalities; fault diagnosis; linear systems; observers

Other keywords: fault sensitivity; $H−/L∞ fault detection; linear discrete-time descriptor systems; bounded disturbances; application scope; disturbance; time-varying threshold calculation; residual generation; linear matrix inequalities; sensor fault detection; fault detection observer design method

Subjects: Optimal control; Algebra; Discrete control systems; Control system analysis and synthesis methods; Simulation, modelling and identification; Stability in control theory

References

    1. 1)
      • 28. Pasqualetti, F., Dörfler, F., Bullo, F.: ‘Attack detection and identification in cyber-physical systems’, IEEE Trans. Autom. Control, 2013, 58, (11), pp. 27152729.
    2. 2)
      • 26. Wang, Z., Rodrigues, M., Theilliol, D., et al: ‘Fault estimation filter design for discrete-time descriptor systems’, IET Control Theory Applic., 2015, 9, (10), pp. 15871594.
    3. 3)
      • 13. Gu, Y., Yang, G.H.: ‘Fault detection for discrete-time Lipschitz non-linear systems in finite-frequency domain’, IET Control Theory Applic., 2017, 11, (14), pp. 21772186.
    4. 4)
      • 10. Li, X.J., Yang, G.H.: ‘Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    5. 5)
      • 25. Jia, Q., Li, H., Zhang, Y., et al: ‘Robust observer-based sensor fault reconstruction for discrete-time systems via a descriptor system approach’, Int. J. Adapt. Control Autom. Syst., 2015, 13, (2), pp. 274283.
    6. 6)
      • 32. Wang, Z., Rodrigues, M., Theilliol, D., et al: ‘Actuator fault estimation observer design for discrete-time linear parameter-varying descriptor systems’, Int. J. Adapt. Control Signal Process., 2015, 29, (2), pp. 242258.
    7. 7)
      • 19. Masubuchi, I., Kato, J., Saeki, M., et al: ‘Gain-scheduled controller design based on descriptor representation of LPV systems: application to flight vehicle control’. 43rd IEEE Conf. on Decision and Control, Bahamas, 2004, pp. 815820.
    8. 8)
      • 1. Chen, J., Patton, R.J.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, Boston, 1999, 1st edn.).
    9. 9)
      • 2. Ding, S.: ‘Model-based fault diagnosis techniques: design schemes, algorithms, and tools’ (Springer Science & Business Media, Berlin, 2008, 1st edn.).
    10. 10)
      • 20. Gao, Z., Ding, S.X.: ‘Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems’, Automatica, 2007, 43, (5), pp. 912920.
    11. 11)
      • 15. Abedor, J., Nagpal, K., Poolla, K.: ‘A linear matrix inequality approach to peak-to-peak gain minimization’, Int. J. Robust Nonlinear Control, 1996, 6, (9-10), pp. 899927.
    12. 12)
      • 4. Zhang, K., Jiang, B., Shi, P.: ‘Observer-based fault estimation and accommodation for dynamic systems’ (Springer, Berlin, 2012, 1st edn.).
    13. 13)
      • 9. Wang, H., Wang, J., Lam, J.: ‘Robust fault detection observer design: iterative LMI approaches’, J. Dyn. Syst. Meas. Control, 2007, 129, (1), pp. 7782.
    14. 14)
      • 3. Isermann, R.: ‘Fault-diagnosis applications: model-based condition monitoring: actuators, drives, machinery, plants, sensors, and fault-tolerant systems’ (Springer Science & Business Media, London, 2011, 1st edn.).
    15. 15)
      • 23. Boulkroune, B., Halabi, S., Zemouche, A.: ‘H/H fault detection filter for a class of nonlinear descriptor systems’, Int. J. Control, 2013, 86, (2), pp. 253262.
    16. 16)
      • 22. Yeu, T.K., Kawaji, S.: ‘Sliding mode observer based fault detection and isolation in descriptor systems’. Proc. 2002 American Control Conf., Alaska, USA, 2002, pp. 45434548.
    17. 17)
      • 18. Dai, L.: ‘Singular control systems’ (Springer, Berlin, 1989).
    18. 18)
      • 12. Zhai, D., An, L., Li, J., et al: ‘Fault detection for stochastic parameter-varying Markovian jump systems with application to networked control systems’, Appl. Math. Model., 2016, 40, (3), pp. 23682383.
    19. 19)
      • 5. Hou, M., Patton, R.J.: ‘An LMI approach to H/H fault detection observers’. Proc. UKACC Int. Conf. on Control, Exeter, UK, 1996, pp. 305310.
    20. 20)
      • 17. Zhou, M., Wang, Z., Theilliol, D., et al: ‘H/L fault detection observer for discrete-time T-S fuzzy systems’. 56th IEEE Conf. on Decision and Control, Melbourne, Australia, 2017, pp. 51375142.
    21. 21)
      • 16. Wang, Z., Lim, C.C., Shi, P., et al: ‘H/L fault detection observer design for linear parameter-varying systems’. Proc. 20th World Congress of Int. Federation of Automatic Control, Toulouse, France, 2017, pp. 1527115276.
    22. 22)
      • 11. Zhai, D., Lu, A.Y., Li, J.H., et al: ‘Simultaneous fault detection and control for switched linear systems with mode-dependent average dwell-time’, Appl. Math. Comput., 2016, 273, pp. 767792.
    23. 23)
      • 31. Estrada, F.L., Ponsart, J.C., Theilliol, D., et al: ‘Robust H/H fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions’, Int. J. Control, 2015, 88, (11), pp. 23802391.
    24. 24)
      • 29. Duan, G.R., Howe, D., Patton, R.J.: ‘Robust fault detection in descriptor linear systems via generalized unknown input observers’, Int. J. Syst. Sci., 2002, 33, (5), pp. 369377.
    25. 25)
      • 6. Wang, H., Lam, J.: ‘Robust fault detection for uncertain discrete-time systems’, J. Guid. Control, Dyn., 2002, 25, (2), pp. 291301.
    26. 26)
      • 27. Wang, Z., Shi, P., Lim, C.C.: ‘H/H fault detection observer in finite frequency domain for linear parameter-varying descriptor systems’, Automatica, 2017, 86, pp. 3845.
    27. 27)
      • 24. Gao, Z., Ho, D.W.: ‘State/noise estimator for descriptor systems with application to sensor fault diagnosis’, IEEE Trans. Signal Process., 2006, 54, (4), pp. 13161326.
    28. 28)
      • 14. Han, W., Wang, Z., Shen, Y., et al: ‘L observer for uncertain linear systems’, Asian J. Control, 2018, 20, (6), pp. 17.
    29. 29)
      • 7. Wang, J.L., Yang, G.H., Liu, J.: ‘An LMI approach to H index and mixed H/H fault detection observer design’, Automatica, 2007, 43, (9), pp. 16561665.
    30. 30)
      • 8. Ding, D.W., Wang, H., Li, X.: ‘H/H fault detection observer design for two-dimensional Roesser systems’, Syst. Control Lett., 2015, 82, pp. 115120.
    31. 31)
      • 21. Bessaoudi, T., Hmida, F.B., Hsieh, C.S.: ‘Robust state and fault estimation for linear descriptor stochastic systems with disturbances: a DC motor application’, IET Control Theory Appl., 2016, 11, (5), pp. 601610.
    32. 32)
      • 33. Darouach, M.: ‘H unbiased filtering for linear descriptor systems via LMI’, IEEE Trans. Autom. Control, 2009, 54, (8), pp. 19661972.
    33. 33)
      • 30. Yeu, T.K., Hwan-Seong, K., Kawaji, S.: ‘Fault detection, isolation and reconstruction for descriptor systems’, Asian J. Control, 2005, 7, (4), pp. 356367.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1408
Loading

Related content

content/journals/10.1049/iet-cta.2017.1408
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading