access icon free Robust sideslip angle observer with regional stability constraint for an uncertain singular intelligent vehicle system

The sideslip angle is an important state parameter for vehicle stability control; in this study, a robust sideslip angle observer with regional stability constraint is presented. In order to achieve more accurate sideslip angle estimation, the vehicle heading angle and yaw angle are distinguished and the relational expression between vehicle heading angle, yaw angle and sideslip angle was applied to the singular vehicle modelling process. Considering the time-varying tire cornering stiffness, the uncertain singular vehicle model is established by integrating the singular vehicle dynamic equation and model uncertainty. Then, a robust sideslip angle observer whose pole assignment has the regional stability constraint is designed. Simulation studies and experimental results illustrate the effectiveness of the proposed sideslip angle estimation method.

Inspec keywords: robust control; time-varying systems; steering systems; pole assignment; road vehicles; motion control; tyres; stability; uncertain systems; observers; vehicle dynamics

Other keywords: accurate sideslip angle estimation; vehicle heading angle; robust sideslip angle observer; sideslip angle; uncertain singular vehicle model; yaw angle; vehicle stability control; singular vehicle dynamic equation; uncertain singular intelligent vehicle system; pole assignment; time-varying tire cornering stiffness; regional stability constraint; sideslip angle estimation method; singular vehicle modelling process

Subjects: Spatial variables control; Simulation, modelling and identification; Road-traffic system control; Vehicle mechanics; Control system analysis and synthesis methods; Stability in control theory; Time-varying control systems

References

    1. 1)
      • 2. Nwesaty, W., Bratcu, A.I., Sename, O.: ‘Power sources coordination through multivariable linear parameter-varying/H∞ control with application to multi-source electric vehicles’. IET Control Theory Appl., 2016, 10, (164), pp. 20492059.
    2. 2)
      • 26. Bevly, D.M., Ryu, J.H., Gerdes, J.C.: ‘Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness’. IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 483493.
    3. 3)
      • 39. Chilali, M., Gahinet, P., Apkarian, P.: ‘Robust pole placement in LMI regions’. IEEE Trans. Autom. Control, 1999, 44, (12), pp. 22572270.
    4. 4)
      • 34. Yoon, J.H., Li, S.E., Ahn, C.: ‘Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with GPS’. Int. J. Automot. Technol., 2016, 17, (3), pp. 427435.
    5. 5)
      • 20. Leung, K.T., Whildborne, J.F., Purdy, D., et al: ‘A review of ground vehicle dynamic state estimations utilising GPS/INS’. Veh. Syst. Dyn., 2011, 49, (1-2), pp. 2958.
    6. 6)
      • 28. Madhusudhanan, A.K., Corno, M., Holweg, E.: ‘Vehicle sideslip estimator using load sensing bearings’. Control Eng. Pract., 2016, 54, pp. 4657.
    7. 7)
      • 36. Zhang, B.J., Du, H.P., Lam, J., et al: ‘A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle’. IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 43574365.
    8. 8)
      • 16. Boada, B.L., Boada, M.J.L., Diaz, V.: ‘Vehicle side slip angle measurement based on sensor data fusion using an integrated ANFIS and an unscented Kalman filter algorithm’. Mech. Syst. Signal Process, 2016, 72, pp. 832845.
    9. 9)
      • 10. Hu, C., Wang, R.R., Yan, F.J., et al: ‘Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles’. IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 40334043.
    10. 10)
      • 37. Zhang, H., Huang, X.Y., Wang, J.M., et al: ‘Robust energy-to-peak sideslip angle estimation with applications to ground vehicles’. Mechatronics, 2015, 30, pp. 338347.
    11. 11)
      • 30. Nam, K., Oh, S., Fujimoto, H., et al: ‘Estimation of sideslip angle and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches’. IEEE Trans. Ind. Electron., 2012, 60, (3), pp. 9881000.
    12. 12)
      • 9. Wang, R.R., Jing, H., Hu, C., et al: ‘Robust H∞ path following control for autonomous ground vehicles with delay and date dropout’. IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20422049.
    13. 13)
      • 12. Doumiati, M., Victorino, A.C., Charara, A., et al: ‘Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle’. IEEE/ASME Trans. Mechatronics, 2011, 16, (4), pp. 601614.
    14. 14)
      • 17. Li, L., Jia, G., Ran, X., et al: ‘A variable structure extended Kalman filter for vehicle side slip angle estimation on a low friction road’. Veh. Syst. Dyn., 2014, 52, (2), pp. 280308.
    15. 15)
      • 22. Solmaz, S., Baslamish, S.: ‘A nonlinear sideslip observer design methodology for automotive vehicles based on a rational tire model’. Int. J. Adv. Manuf. Technol., 2012, 60, pp. 765775.
    16. 16)
      • 3. Zhang, J.H., Sun, W.C., Feng, Z.G.: ‘Vehicle yaw stability control via H∞ gain scheduling’. Mech. Syst. Signal Process, 2018, 106, pp. 6275.
    17. 17)
      • 21. Baffet, G., Charara, A., Lechner, D.: ‘Estimation of vehicle sideslip, tire force and wheel cornering stiffness’. Control Eng. Pract., 2009, 17, (11), pp. 12551264.
    18. 18)
      • 35. Yoon, J.H., Peng, H.: ‘Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer with GPS’. IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 191204.
    19. 19)
      • 40. Bender, D. J., Laub, A.J.: ‘The linear-quadratic optimal regulator for descriptor systems’. IEEE Transactions on Automatic Control, 1987, 32, (8), pp. 672688.
    20. 20)
      • 13. Jin, X.J., Yin, G.D.: ‘Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach’. J. Franklin Inst., 2015, 352, pp. 686707.
    21. 21)
      • 24. Pi, D.W., Chen, N., Wang, J.X., et al: ‘Design and evaluation of sideslip angle observer for vehicle stability control’, Int. J. Automot. Technol., 2011, 12, (3), pp. 391399.
    22. 22)
      • 23. Ma, B., Liu, Y.H., Gao, Y.F., et al: ‘Estimation of vehicle sideslip angle based on steering torque’, Int. J. Adv. Manuf. Technol., 2016, 94, (9–12), pp. 19.
    23. 23)
      • 6. Rath, J.J., Veluvolu, K.C., Defoort, M., et al: ‘Higher-order sliding mode observer for estimation of tyre friction in ground vehicles’. IET Control Theory Appl., 2014, 8, (6), pp. 399408.
    24. 24)
      • 1. Wang, R.R., Zhang, H., Wang, J.M.: ‘Linear parameter-varying-based fault-tolerant controller design for a class of over-actuated non-linear systems with applications to electric vehicles’. IET Control Theory Appl., 2014, 8, (9), pp. 705717.
    25. 25)
      • 4. Chen, T., Xu, X., Li, Y., et al: ‘Speed-dependent coordinated control of differential and assisted steering for in-wheel motor driven electric vehicles’, Proc. IMechE D: J Automob. Eng., 2017, doi: 10.1177/0954407017728189.
    26. 26)
      • 5. Chen, T., Xu, X., Chen, L., et al: ‘Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles’. Mech. Syst. Signal Process, 2018, 101, pp. 377388.
    27. 27)
      • 14. Chen, B.C., Hsieh, F.C.: ‘Sideslip angle estimation using extended Kalman filter’, Vehicle Syst. Dyn., 2008, 46, (1), pp. 353364.
    28. 28)
      • 32. Tuononen, A.J.: ‘Vehicle lateral state estimation based on measured tyre forces’. Sensors, 2009, 9, pp. 87618775.
    29. 29)
      • 27. Li, X., Chan, C.Y., Wang, Y.: ‘A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles’. IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44404458.
    30. 30)
      • 11. Wang, R.R., Hu, C., Yan, F.J., et al: ‘Composite nonlinear feedback control for path following of four-wheel independently actuated autonomous ground vehicles’. IEEE Trans. Intell. Transp. Syst., 2016, 17, (7), pp. 20632074.
    31. 31)
      • 29. Leung, K.T., Whildborne, J.F., Purdy, D., et al: ‘Road vehicle state estimation using low-cost GPS/INS’. Mech. Syst. Signal Process, 2011, 25, (6), pp. 19882004.
    32. 32)
      • 19. Liu, W., He, H.W., Sun, F.C.: ‘Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter’. J. Franklin Inst., 2016, 353, pp. 834856.
    33. 33)
      • 18. Liu, Y.H., Li, T., Yang, Y.Y., et al: ‘Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm’. Mech. Syst. Signal Process, 2017, 88, pp. 2535.
    34. 34)
      • 25. Li, B., Du, H., Li, W., et al: ‘Side-slip angle estimation based lateral dynamics control for omni-directional vehicles with optimal steering angle and traction/brake torque distribution’. Mechatronics, 2015, 30, pp. 348362.
    35. 35)
      • 31. Yoon, J.H., Peng, H.: ‘A cost-effective sideslip estimation method using velocity measurements from two GPS receivers’. IEEE Trans. Veh. Technol., 2014, 63, (6), pp. 25892599.
    36. 36)
      • 33. Li, X., Song, X., Chan, C.Y.: ‘Reliable vehicle sideslip angle fusion estimation using low-cost sensors’. Measurement, 2014, 51, pp. 241258.
    37. 37)
      • 38. Chilali, M., Gahinet, P.: ‘H design with pole placement constraints: an LMI approach’, IEEE Trans. Autom. Control, 1996, 41, (3), pp. 358367.
    38. 38)
      • 41. Wang, Y., Xie, L., Souza, C.D.: ‘Robust control of a class of uncertain nonlinear systems’. Systems & Control Letters, 1992, 19, (2), pp. 139149.
    39. 39)
      • 8. Nam, K., Fujimoto, H., Hori, Y.: ‘Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors’. IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 19721985.
    40. 40)
      • 7. Sun, W.C., Pan, H.H., Gao, H.J.: ‘Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators’. IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 46194626.
    41. 41)
      • 15. Li, L., Song, J., Li, H.Z., et al: ‘A variable structure adaptive extended Kalman filter for vehicle slip angle estimation’. Int. J. Veh. Des., 2011, 56, (1-4), pp. 161185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1395
Loading

Related content

content/journals/10.1049/iet-cta.2017.1395
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading