http://iet.metastore.ingenta.com
1887

Stochastic optimal control for sampled-data system under stochastic sampling

Stochastic optimal control for sampled-data system under stochastic sampling

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of designing a stochastic optimal controller for sampled-data systems whose sampling interval is subjected to a certain probability distribution is addressed. To design the controller, the Kronecker product operation and the Vandermonde matrix were introduced. A design method of the stochastic optimal controller is proposed. It is shown that the controller guarantee that the closed-loop system has exponentially mean square stability. Finally, the simulation results illustrate the effectiveness and practicability of the proposed method.

References

    1. 1)
      • 1. Ding, F., Qiu, L., Chen, T.: ‘Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems’, Automatica, 2009, 45, (2), pp. 324332.
    2. 2)
      • 2. Seuret, A.: ‘A novel stability analysis of linear systems under asynchronous samplings’, Automatica, 2012, 48, (1), pp. 177182.
    3. 3)
      • 3. Tang, Z.J., Huang, T.Z., Shao, J.L., et al: ‘Leader–following consensus for multi-agent systems via sampled-data control’, IET Control Theory Appl., 2011, 5, (14), pp. 16581665.
    4. 4)
      • 4. Chen, T., Francis, B.A.: ‘Optimal sampled-data control systems’ (Springer, London, 1995).
    5. 5)
      • 5. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst., 2001, 21, (1), pp. 8499.
    6. 6)
      • 6. Yang, T.C.: ‘Networked control system: a brief survey’, IEE Proc., Control Theory Appl., 2006, 153, (4), pp. 403412.
    7. 7)
      • 7. Ding, D., Wang, Z., Shen, B.: ‘Event-triggered distributed H-state estimation with packet dropouts through sensor networks’, IET Control Theory Appl., 2015, 9, (13), pp. 19481955.
    8. 8)
      • 8. Hetel, L., Fiter, C., Omran, H., et al: ‘Recent developments on the stability of systems with aperiodic sampling: an overview’, Automatica, 2017, 76, pp. 309335.
    9. 9)
      • 9. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    10. 10)
      • 10. Fridman, E., Seuret, A., Richard, J.P.: ‘Robust sampled-data stabilization of linear systems: an input delay approach’, Automatica, 2004, 40, (8), pp. 14411446.
    11. 11)
      • 11. Fridman, E.: ‘A refined input delay approach to sampled-data control’, Automatica, 2010, 46, (2), pp. 421427.
    12. 12)
      • 12. Liu, K., Fridman, E.: ‘Wirtinger's inequality and Lyapunov-based sampled-data stabilization’, Automatica, 2012, 48, (1), pp. 102108.
    13. 13)
      • 13. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: ‘Exponential stability of impulsive systems with application to uncertain sampled-data systems’, Syst. Control Lett., 2008, 57, (5), pp. 378385.
    14. 14)
      • 14. Fujioka, H.: ‘A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 24402445.
    15. 15)
      • 15. Suh, Y.S.: ‘Stability and stabilization of nonuniform sampling systems’, Automatica, 2008, 44, (12), pp. 32223226.
    16. 16)
      • 16. Wen, S., Huang, T., Yu, X., et al: ‘Aperiodic sampled-data sliding-mode control of fuzzy systems with communication delays via the event-triggered method’, IEEE Trans. Fuzzy Syst., 2016, 24, (5), pp. 10481057.
    17. 17)
      • 17. Wen, S., Huang, T., Yu, X., et al: ‘Sliding–mode control of memristive chua's systems via the event-based method’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, (1), pp. 8185.
    18. 18)
      • 18. Wen, S., Zeng, Z., Chen, M.Z.Q., et al: ‘Synchronization of switched neural networks with communication delays via the event-triggered control’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (10), pp. 23342343.
    19. 19)
      • 19. Khargonekar, P.P., Sivashankar, N.: ‘H2-optimal control for sampled-data systems’, Syst. Control Lett., 1991, 17, (6), pp. 425436.
    20. 20)
      • 20. Geromel, J.C., Gabriel, G.W.: ‘Optimal H2 state feedback sampled-data control design of markov jump linear systems’, Automatica, 2015, 54, pp. 182188.
    21. 21)
      • 21. Gabriel, G.W., Geromel, J.C., Grigoriadis, K.M.: ‘Optimal H state feedback sampled-data control design for Markov jump linear systems’, Int. J. Control, DOI: 10.1080/00207179.2017.1323352.
    22. 22)
      • 22. Bourdin, L., Trelat, E.: ‘Linear–quadratic optimal sampled-data control problems: convergence result and riccati theory’, Automatica, 2017, 79, pp. 273281.
    23. 23)
      • 23. Shen, B., Wang, Z., Huang, T.: ‘Stabilization for sampled-data systems under noisy sampling interval’, Automatica, 2016, 63, pp. 162166.
    24. 24)
      • 24. Pipeleers, G., Demeulenaere, B., De Schutter, J.: , et alRobust high-order repetitive control: optimal performance trade-offs’, Automatica, 2008, 44, (10), pp. 26282634.
    25. 25)
      • 25. Boje, E.: ‘Approximate models for continuous-time linear systems with sampling jitter’, Automatica, 2005, 41, (12), pp. 20912098.
    26. 26)
      • 26. Eng, F., Gustafsson, F.: ‘Identification with stochastic sampling time jitter’, Automatica, 2008, 44, (3), pp. 637646.
    27. 27)
      • 27. Kim, M., Djadjuri, K.: ‘On stochastic optimal control of linear sampled data systems’, Proc. IEEE, 1965, 53, (5), pp. 529530.
    28. 28)
      • 28. Ades, M., Caines, P.E., Malhame, R.P.: ‘Stochastic optimal control under poisson-distributed observations’, IEEE Trans. Autom. Control, 2000, 45, (1), pp. 313.
    29. 29)
      • 29. Gao, H., Wu, J., Shi, P.: ‘Robust sampled-data H-control with stochastic sampling’, Automatica, 2009, 45, (7), pp. 17291736.
    30. 30)
      • 30. Moler, C., Van Loan, C.: ‘Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later’, SIAM Rev., 2003, 45, (1), pp. 349.
    31. 31)
      • 31. Schappelle, R.: ‘The inverse of the confluent Vandermonde matrix’, IEEE Trans. Autom. Control, 1972, 17, (5), pp. 724725.
    32. 32)
      • 32. Astrom, K.: ‘Introduction to stochastic control theory’ (Academic Press, New York, 1970).
    33. 33)
      • 33. Nilsson, J., Bernhardsson, B., Wittenmark, B.: ‘Stochastic analysis and control of real-time systems with random time delays’, Automatica, 1998, 34, (1), pp. 5764.
    34. 34)
      • 34. Walsh, G.C., Ye, H.: ‘Scheduling of networked control systems’, IEEE Control Syst., 2001, 21, (1), pp. 5765.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1392
Loading

Related content

content/journals/10.1049/iet-cta.2017.1392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address