Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid architecture for vehicle lateral collision avoidance

In this study, the authors consider the problem of collision avoidance of ground vehicles. In this framework, they focus on a single vehicle, and they guarantee that a given safe set is not exited during a mission. More specifically, they consider the yaw-lateral motion of a two-wheel vehicle subject to a side wind, and they design a state-feedback controller such that the vehicle follows the nominal trajectory with a given maximum error. For these purposes, they resort to a control system where a supervisor, implemented as a hybrid automata, decides to switch between two controllers, depending on the measured vehicle lateral displacement from the nominal trajectory. The two controllers are designed using an approach and the input–output finite-time stability approach, respectively. Some simulation results are included, showing the effectiveness of the proposed architecture.

References

    1. 1)
      • 17. Cole, D.J., Pick, A.J., Odhams, A.M.C.: ‘Predictive and linear quadratic methods for potential application to modelling driver steering control’, Veh. Syst. Dyn., 2006, 44, (3), pp. 259284.
    2. 2)
      • 29. Amato, F., De Tommasi, G., Pironti, A.: ‘Input-output finite-time stabilization of impulsive linear systems: necessary and sufficient conditions’, Nonlinear Anal.: Hybrid Syst., 2016, 19, pp. 93106.
    3. 3)
      • 21. Scherer, C., Gahinet, P., Chilali, M.: ‘Multi-objective output feedback control via lmi optimization’, IEEE Trans. Auto. Control, 1997, 42, (7), pp. 896911.
    4. 4)
      • 18. Chen, H., Guo, K.-H.: ‘Constrained H control of active suspensions: an lmi approach’, IEEE Trans. Control Sys. Technol., 2005, 13, (3), pp. 412421.
    5. 5)
      • 7. Hayashi, R., Fujimori, S., Iwata, H., et al: ‘The autonomous frontal obstacle avoidance system with trajectory updating function’, Mech. Eng. J., 2017, 4, (1), pp. 113.
    6. 6)
      • 4. van Arem, B., van Driel, C.J.G., Visser, R.: ‘The impact of cooperative adaptive cruise control on traffic-flow characteristics’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 429436.
    7. 7)
      • 25. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to H control’, Int. J. Robust and Nonlin. Control, 1994, 4, (4), pp. 421448.
    8. 8)
      • 8. Soudbakhsh, D., Eskandarian, A.: ‘Steering control collision avoidance system and verification through subject study’, IET Intell. Transp. Syst., 2015, 9, (10), pp. 907915.
    9. 9)
      • 19. Amato, F., Carannante, G., De Tommasi, G., et al: ‘Input-output finite-time stabilization of linear systems with input constraints’, IET Control Theory Appl., 2014, 8, pp. 14291438.
    10. 10)
      • 10. Eidehall, A., Pohl, J., Gustafsson, F., et al: ‘Toward autonomous collision avoidance by steering’, IEEE Trans. Intell. Transp. Syst., 2007, 8, (1), pp. 8494.
    11. 11)
      • 2. Koudijs, G.: ‘Control Methods for Fail-Safety in Cooperative Automated Driving’. Master thesis, Eindhoven University of Technology, 2015.
    12. 12)
      • 22. Amato, F., Ambrosino, R., Ariola, M., et al: ‘Finite-time stability and control’ (Springer Verlag, London, UK, 2014).
    13. 13)
      • 1. Amato, F., Carannante, G., De Tommasi, G., et al: ‘Input-output finite-time stability of linear systems: necessary and sufficient conditions’, IEEE Trans. Auto. Control, 2012, 57, (12), pp. 30513063.
    14. 14)
      • 9. Soudbakhsh, D., Eskandarian, A., David, C.: ‘Vehicle collision avoidance maneuvers with limited lateral acceleration using optimal trajectory control’, J. Dyn. Syst. Meas. Control, 2013, 135, (4), pp. 112.
    15. 15)
      • 24. Shaked, U., Suplin, V.: ‘A new bounded real lemma representation for the continuous-time case’, IEEE Trans. Auto. Control, 2001, 46, (9), pp. 14201426.
    16. 16)
      • 20. Boyd, S., El Ghaoui, L., Feron, E., et al: ‘Linear matrix inequalities in system and control theory’ (SIAM Press, Philadelphia, USA, 1994).
    17. 17)
      • 5. Alam, A., Gattami, A., Johansson, K.H., et al: ‘Guaranteeing safety for heavy duty vehicle platooning: safe set computations and experimental evaluations’, Control Eng. Pract., 2014, 24, pp. 3341.
    18. 18)
      • 11. Lin, C.F., Juang, J.C., Li, K.R.: ‘Active collision avoidance system for steering control of autonomous vehicles’, IET Intell. Transp. Syst., 2014, 8, (6), pp. 550557.
    19. 19)
      • 12. Navarro-López, E.M., Carter, R.: ‘Hybrid automata: an insight into the discrete abstraction of discontinuous systems’, Int. J. Syst. Sci., 2011, 42, (11), pp. 18831898.
    20. 20)
      • 13. Rasekhipour, Y., Khajepour, A., Chen, S.K., et al: ‘A potential field-based model predictive path-planning controller for autonomous road vehicles’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 12551267.
    21. 21)
      • 16. Pacejka, H.B.: ‘Tire and vehicle dynamics’ (Butterworth-Heinemann, Oxford UK, 2012, 3rd edn.).
    22. 22)
      • 26. Liberzon, D.: ‘Switching in systems and control’ (Birkhäuser, Boston, USA, 2003).
    23. 23)
      • 28. Gahinet, P., Nemirovski, A., Laub, A.J., et al: ‘LMI control toolbox’ (The Mathworks Inc., Natick, MA, USA, 1995).
    24. 24)
      • 23. Anderson, B.D.O., Moore, J.B.: ‘Optimal control’ (Prentice Hall, Englewood Cliffs, NJ, USA, 1989).
    25. 25)
      • 15. Jazar, R.N.: ‘Vehicle dynamics: theory and applications’ (Springer, New York, USA, 2008).
    26. 26)
      • 14. Sharp, R.S., Valtetsiotis, V.: ‘Optimal preview car steering control’, Veh. Syst. Dyn. Suppl., 2001, 35, pp. 101117.
    27. 27)
      • 6. Gutjahr, B., Gröll, L., Werling, M.: ‘Lateral vehicle trajectory optimization using constrained linear time-varying mpc’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (6), pp. 15861595.
    28. 28)
      • 27. Dominguez, S., Ali, A., Garcia, G., et al: ‘Comparison of lateral controllers for autonomous vehicle: experimental results’. Proc. 2016 Int. Conf. Intelligent Transportation Systems, Rio de Janeiro Brazil, 2016, pp. 14181423.
    29. 29)
      • 3. Alam, A., Besselink, B., Turri, V., et al: ‘Heavy-outy vehicle platooning for sustainable freight transportation: a cooperative method to enhance safety and efficiency’, IEEE Control Syst. Maga., 2015, 35, pp. 3456.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1387
Loading

Related content

content/journals/10.1049/iet-cta.2017.1387
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address